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Upper-stem tree measurements are frequently made outside bark with the 
only bark thickness measurements being made at breast height. The current study 
develops equations and coefficients for estimating the bark thickness in both the 
upper stem and at the stumps based upon the bark thickness at breast height, the 
size of the tree (DBH and total height), and the height to the measurement in 
question. 

Previously-published bark taper models were examined; the model adapted 
here is a previously-published hyperbolic ratio, with an adjustment. The 
adjustment is made to accountfor the morerapid taper on trees with thicker bark. 

The data used for fitting and testing the taper models consisted of 
measurements on over 3,000 conifer trees measured by members of the Northern 
California Forest Yield Cooperative and the USDA Forest Service. The data set 
was split into two halves, one half for fitting and the other half for testing. 

The adjusted hyperbolic model outperformed the other upper stem bark 
taper models for all speciesexcept red fir, where it gave similarresults as one of the 
hyperbolic ratios and one of the segmented-polynormalmodels. For the bark taper 
at the stumps, the recommended power function outperformedthe other models for 
all six conifer speciesexamined. . 

While we are usually interestedin the tree diameter inside bark for estimating tree volume, 

it is usually outside-bark diameters that are observed,often using an opticaldevice to estimate tree 

diameters at various heights above the ground. This leaves one with the problem of estimating the 

bark thickness for each outside-barkdiameter measuredalong the stem. The objective here is to 

examine alternative models for expressingthe relative taper of the bark so that bark thickness 

1	 The authors are, respectively, Professor and Graduate Research Assistant, University of California. Berkeley, CA 
94720. The authors gratefully acknowledge the assistance of Ralph Warbington, Kevin Casey, Chuck 
Stadelman, and LeRoy Dolph of the U.S. Forest Service in helping to accumulate the data sets used for this study 
and to AI Stangenberger, Kip Freytag, and Frieder Schurr for help in preparing the data for analysis. 
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observed at breast height can be used to estimate the bark thicknessat various points along the 
stern. 

The current study is a cooperative effort betweenthe University of California. the USDA 

Forest ServiceRegion 5 and the Pacific SouthwestResearch Station, the California Department of 

Forestry and Fire Protection, Michigan-CaliforniaLumber Company, and Crane Mills. The 

conifer speciesconsidered include the following: 

~ Species 

PP ponderosa pine (Pinusponderosa Dougl. ex Laws.) 

SP sugar pine (P.lambertiana Dougl.) 

DF Douglas-fIr (Pseudotsugamenziesii (Mirb.) Franco) 

WF white fir (Abies concolor (Gord. & Glend.) Lindl. ex Hildebr.) 

RF red fir (A. magnifica A. Murr.) 

IC incense-cedar (Calocedrusdecurrens [Torr.] Florin) 

For many of the same conifer species consideredhere, Khan, Bell, and Berg (1977), 

Richie and Hann (1984), Dolph (1984, 1989)and Larsen and Hann (1985) developed expressions 
for inside-barkdiameter as a functionof diameter outsidebark. These include linear and nonlinear 

regressions and ratio models. However, as noted by Assman (1970, p.73), within the same 

species bark thickness varies "according to site, age, and racial characteristics of the tree". Thus, 

improvementsin the predictionscan be expectedwith more "local"information on the bark 

thickness of each tree. Also, the "true"relationshipbetween inside- and outside-bark diameters is 

the subject of the current paper. 

When measuring standing trees with an opticaldendrometer, the usual process is to 

measure the double bark thickness at breast height (DBTBH)by either cutting into the stern with an 

axe or by using a bark gauge at 4.5 feet above the ground. Because such measurements are made 

with some error and since bark thicknessvaries around the stern, typically two such measurements 

are taken at right angles to each other and added to estimate the DBTBH, still with some error. 

Bark taper models can then be used to express the reductionin bark thickness as one goes from 

breast height to the tip or to the stump of the tree. Thus, the measurement of bark thickness at 

breast height "localizes" the predictionsof bark thicknessat other points. Below breast height one 

of two relationships are evident. Undamagedtrees have bark thickness increasing from breast 

height down to the stump while trees that show damage due to fire and/or logging may have 

thinner bark at the stump than at breast height. 
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MODELS CONSIDERED 

In this study, availablebark thicknessmodelswere evaluated for their ability to predict the 

bark taper from felled tree data collected in five differentstudiesof stem taper in California conifers 

(see "Data" below). The upper stem (abovebreastheight) bark taper models evaluated are 

presented in Tables 1 and 2 while the lower stem (belowbreast height) models are considered in a 

later section. Table 1 includes basic hyperbolicmodelsand Table 2 includes segmented 

polynomial models. Each equation is formulatedto predict the relativebark thicknessat a given 

height and the variables used includethe following: 

DBH Diameter at breast height (4.5feet) 

DBT Double bark thicknessat height h 

DBTBH Double bark thicknessat breast height 

DIB Diameter inside bark at heighth 

DOB Diameter outsidebark at heighth 

h Height to measurement 

THT Total height of tree 

We assume that the bark thicknessat breast heightcan be measuredand the variable predicted is the 

relative bark thickness, D~~H' That is, Yi is the estimatedrelative bark thickness, n.~!!:Lnfor 

bark taper model i (i = 1,2, . . ., 10). 
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Hyperbolic ratios (upper stem) 

In his STX computer program for reducingmeasurementsfrom optical dendrometers to 

tree diameter and volume estimates, Orosenbaugh(1974)provides three bark taper options. These 

ratios, illustrated in Figure 1, include a constant ratio, option 1, and two hyperbolic ratios, options 

2 and 32. The STX bark options, denoted as 01, 02, and 03, respectively, are as follows: 

DOB - 5BT - DBH - DBTBH 
(01) OOB - DBH 

5BT =(DBTBH 1

(02)3 OOB DBH )(

2-.ooJl )
DBH 

(03) 
DOB - 5BT _ (DBH -DBTBH) 

9 
OOB DBH 10- OOB

( DBH ) 

Conifer relative bark thickness decreasesfaster than the diameterratio as illustrated in Figure 2 by 

the sample white fIr data set This causes a distinct lack of fit for bark options 1 and 3 which 

predict the bark ratio to decrease proportionalto the diameterratio and slowerthan the diameter 

ratio, respectively. Bark option 2 has the general form of the bark taper relationship, but, as 

illustrated in Figure 2, option 2 appears to underestimatethe bark thickness in the top half of the 

tree and overestimate in the bottom half. Nonetheless,since it has less bias than either option 1 or 

option 3, option 2 has been used in previous stem taper studies (Wensel 1977 and Wensel and 

Krumland 1983). Thus, while Orosenbaugh's options 1 and 3 are dropped from further 

consideration, option 2 will be the first bark model consideredhere (see Table 1). 

Models 2 through 5 (Table 1) are variants on this basic hyperbola (Brickell, 1970) 

restricted so that Y = 1 at breast height and Y = 0 at the tip where DOB = O. Model 2 is similar to 

model 1 but the value of the coefficient is estimatedfrom the data. Models 3 through 5 are 

variations of model 2 with different numbers of coefficientsfItted to the various components. 

Models 1 through 5 all showed differentialbias associatedwith the bark thickness at breast 

height, even for the 4 parameter model 3 for which the residuals of upper stem bark thickness 

2 A fourth option is also provided for users to supply their own bark model.

3 Grosenbaugh (1974) denotes the two coefficients I and 2, by QUAN and DENO, respectively. However, if DBT


is to equal DBTBH when OOB equals DBH, QUAN must equal DENO - I leaving option 2 with only one 
effective coefficient. 
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predictions consistently showed a negative correlationwith the bark thicknessat breast height. To 

alleviate this bias a function ofDBTBH was added to model 3 fonning bark model 6 (fable 1). 

The teffi1is consttucted so that the relative bark thicknessis still predicted as one at breast height, 

but the bark thickness near the tip goes to the inverse of the value of the DBTBH in inches. 

Segmented polynomials (upper stem) 

Segmented polynomials were fIrst used for tree taper by Max and Burkhart (1976) who 

cited earlier work by Fuller (1969), Gallant and Fuller (1973), and Gallant (1974). Two or more 

polynomials are fItted to sections of the range and grafted togetherat one or morejoin points. At 

each join point the model is required to be continuous,and the fIrst derivativemust be continuous. 

Further, Max and Burkhart use the polynomialpresentedfor tree taper by Kozak, Monro, and 

Smith (1969), and they constrain the model to predict the value 0 at the tip of the tree (relative 

height equal to 1) . 

Maguire and Hann (1990) start with this basic defInitionand impose the further 

requirement that the model reflect the tree-to-treevariabilityin the height to diameter ratio. Maguire 

and Hann's model is represented in Table 2 by models74 and 8, for relative height and relative 

diameter, respectively. They applied their model to Douglas-fIr,and their model estimates will be 

examined here using both their parameterestimatesand estimatesfrom the data at hand. 

Models 9 and 10are two- and three-segmentedpolynomials,respectively, on relative 

diameter with the fOffi1ulationdirectly from the work of Max and Burkhart (1976). 

Stump models 

A common approach to estimatingbark thicknessbelow breast height is to use one of the 

models for the upper stem. An exception is a stumpmodel developed by Maguire and Hann 

(1990) for predicting bark thickness betweenbreast height and a one foot stump. However, the 

model by Maguire and Hann was not includedin this analysisbecause it requires height to crown 

base as one of the predictor variables. 

Here we examine four models for predictingbark thickness at the stump. As with the 

upper stem models, we assume that the bark thicknessat breast height can be measured and the 

variable predicted is the relative bark thickness,Y = D~~H' The four stump models considered 

are given in Table 3. They include a simple proportionalmodel (Grosenbaugh's option 1), a 

4 Note that this is the only model considered that uses relative height instead of relative diameter. 
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hyperbolicmodel (Grosenbaugh'soption2),a simplelinearmodel,anda powermodelthat 

reflects the bark thicknessat breast height All modelsare constrainedto predict the relative bark 

thickness to be equal to 1 when the relativediameter is equal to 1. 

DATA 

The bark taper data used here are takenfrom 5 separate sourceswhere bark measurements 

along the tree stem were made as part of separatestudieson tree taper or utilization. Each of these 

data sources in described briefly here and the numberof trees in each data set is shown by species 
in Table 4. 

The "Coop" bark data set comes from a stem analysisdata set developed by members of the 

Northern California Forest Yield Cooperative. Fonned in 1978, this cooperative research group 

links the research staff at the Universityof Californiawith various private forestry companies and 

public agencies to produce growth prediction models for Californiaconifers. A previous study 

(Biging 1984)used the inside-bark tree diametersto develop stem taper equations for California 

conifers. Measurements on these same trees were also used for initial growth models for 

CACfOS, the California Conifer Timber Output Simulator(Wensel, Meerschaert and Biging, 

1987). The data came from industry forestlands in the Sierra Nevadas, Southern Cascades, the 

Shasta-Trinity, and the Mendocino region. 

The "Dolph"data set comes from a study of conifer trees in California's Sierra Nevadas 

and was collected for the purpose of developinga CaliforniaPROGNOSISvariant (Dolph 1984 

and 1989). The "Fir Study" data set was contributed to this study by Bill Oliver (USFS, Redding) 

and was the basis for his growth studies on thinned true fIr stands. "Region 6" refers to U.S. 

Forest Service data from southern Oregon. These data were collectedfrom sample trees in 

southern Oregon to adjust the regional gross volume inventoryestimates for local utilization. 

The "Mill Study" data come from a seriesof utilizationstudiesconducted in California by 

the USDA Forest Service PacifIcNorthwestForest ExperimentStation. Sample trees were felled 

and scaled in the field, scaled again in the mill before being sent through the mill for conversion. 

Data screening / editing 

The data were received from the various contributorsand cooperators and stored in a 

common data base. The data were then retrieved from this data base using a screening process that 
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eliminated trees and/or observations that were obviouslyin error or would result from forked. 

broken, or grossly malformed trees. Since field data sheets for most of the data were not readily 

available, there were no furtherchanges made to the editeddata. 

The mean, minimum, and maximumtree DBH and total height by species are given in 
Table 5. 

RESULTS and DISCUSSION 

The SAS nonlinear fitting procedure, NLIN, was used with the Marquardt option (SAS 

Institute, 1985). Each of the 14 models was fitted to each of the six major conifer species 

considered. Tables 6 and 7 give the coefficientsfor the models listed in Tables 1 and 2 for the 

hyperbolic and segmented polynomialmodels, respectively. Tables 8 and 9 show the residual 

sums of squares by species, model, and data set. 

Hyperbolic models (upper stem) 

For the single parametermodels, a distinct improvementwas made by fitting the parameter 

b2 to the data rather than using the value ~ =2 as in model 1. A substantialimprovement in the 

quality of the fit was achieved by using the 4-parametermodel, model 3. Sums of squares 

dropped about 21% overall, and a better fit of relativebark thicknesswas achieved both at the top 

and the bottom of the tree. The relationshipbetweenthe singleand 4-parametermodels is 

illustrated in Figures 3 and 4 for ponderosa pine and Douglas-fir,respectively. These figures 

show that the general form of the models 2 and 3 are similarfor ponderosapine but differ 

considerably for Douglas-fir. The differencesin the residualpatterns are illustrated in Figures 5 

through 85. 

Figures 5 and 6 for ponderosa pine and Douglas-fir, respectively, show a more balanced 

residual pattern for the 4-parameter model, model 3. The effect is even more dramatic for Douglas­

fir. Model 2 residuals (Figure 7) indicateconsiderablebias in the estimates in the tips of the trees 

which appears to be absent in the model 3 residuals (Figure 8). Overestimatesof bark in the tips of 

the trees will have little effect on the estimatesof volumein these sections. Its significance is more 

5 Searle (1988) points out that the single or parallel lines with slope -1 in residual plots "occur no matter what 
model is fitted to y, and correspondingly no matter how y is calculated. be it based on linear or nonlinear 

estimates." Thus the occurrence of such lines here is to be expected andshouldbeof noconcernto thereader. 

Barlctaper models for Californiaconifers - 7 ­



imponant in the estimation of merchantableheight of the tree, i.e., the height at which the tree 

diameter inside bark is equal to the merchantablelimit (say,4 or 6 inches). 

The 4-parameter model fits better than the one-parametermodel. However, it may be over­

specified. The four coefficients were not all significantfor any of the 6 species. This suggests that 
we should be able to define the relationshipwith fewercoefficients. Model 4 with b3 and b4 

dropped and model 5 with only b3 dropped showed only nominal increases in the residual sums of 

squares for most species, and in some cases, there were slight decreases in the mean square error 

(MSE). In summary, for white fir, incense-cedar,and ponderosa pine, there was little difference 

between the sums of squares for models 3, 4, and 5. The other three species showed considerable 

model improvement from model 5 to 3. 

As evident in Figures 5 and 6, even the 4-parametermodel does not do an adequate job of 

producing zero average residuals in the top of the tree. This pattern was evident in all 6 species. 

As a result, the hyperbolic model was "adjusted"with a secondadditive term (see model 6 in Table 

I) that was a function of the bark thickness at breast height. Figure 9 shows the form of model 6 

for bark thickness 0.5, 1,2, and 4 inches using coefficients fitted for Douglas-fir. The location of 

the minimum point for each value of DBTBH is indicatedby the line crossing the prediction lines6. 

The relationship between these minimumvaluesand DBTBH is: 

1 
Rmin = a * DBTBH 

where Rmin is the calculated minimumrelativediameterfor each speciesas a function of DBTBH 

and a is a species-specificcoefficient. The Rmin valuescalculatedfor the six species appear in 

Table 10. 

This gives a conditional function Y6 as follows 

fmin RD < Rmin 
Y6 = { Y6 RD ~ Rmin 

where RD =relative diameter , (~~); Rmin=diameterratio at which the minimum bark ratio 

occurs; and fmin =minimum bark ratio (i.e., Y6 = fmin for RD = Rmin). . 

Model 6 with two coefficientsfor the hyperbolaand one coefficientfor the "adjustment" 

reduced the total sum of squares an average of 8% over all species. A comparison of Figures 11 

6	 The minimum points were found by calculating the fIrst derivative of model 6 for each species, setting the 
derivative to zero, and solving for the range of DBTBH's. 
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and 12 with Figures 5 and 6, respectively, shows that ponderosa pine with its thicker bark 

produces more of an "adjustment" in the tops of the trees than does Douglas-fIr. However, its real 

benefit comes from the improvementin the fit in the tops of the trees, as illustrated in Figures 11 

and 12, since even the 4-parameterhyperbolicmodel failed to provide an unbiased model for the 

top of the tree. 

Segmented polynomials (upper stem) 

Maguire and Hann (1990) base their 2-sectionedmodel on relative height. Their model for 

Douglas-fIr, model 7, is shown in Figure 13with both their coefficients and with coefficients 

computed from our data. There is little differencebetween the two models but both show an 

irregular pattern of bark change as one progresses up the tree. 

In an attempt to improve this pattern, we used relativediameter instead of relative height to 

produce model 8. This change produced a 19%drop in the residual sums of squares over all 

species with the change being similarfor all species. This causes us to reject model 7 in favor of 
model 8. 

Fitting the join point, k, along with the othercoefficientsproduced nearly identical residual 

sums of squares for all speciesexcept white and red firs and even here the improvement in the 

residual sums of squares was less than 1%. As a result, the value k =0.3 proposed for stem taper 

by Maguire and Hann (1990) was used in model 8 for all species. 

To evaluate the effect of using Maguire and Hann'sprocess for using the height/diameter 

ratio over a simple 2-sectioned segmentedpolynomial,we can compare models 8 and 9. Here we 

see that this step produces no real improvementin the residual sums of squares (Table 9) for 

ponderosa pine, sugar pine, Douglas-fir, and white fIr, but there is a small (though insignificant) 

improvement for both red fIr and incense-cedar. The differencebetween models 8 and 9 was the 

greatest for red fir and is illustrated in Figure 14. 

Adding a third section to the segmentedpolynomialmodel has the potential of improving 

the fit in the top of the tree. Figures 15and 16 show the differencesbetween models 9 and 10for 

ponderosa pine and Douglas-fIr,respectively. There is some slight improvement in the overall 

residual sums of squares for some species, but, as shown in the residual plots in Figures 17 and 

18, any real advantage of using three sectionscomes from the improvementin the residual pattern 

in the tips of the trees. 
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Best upper stem model 

Among the segmentedpolynomialmodels, the 3-sectionedmodel, model 10, appears to 

have an advantage of small residual sums of squares for all speciesexcept red fIr and incense­

cedar and a better residual pattern for all species. Comparingthe best hyperbolic model, model 6, 

with the best segmentedpolynomialmodel, model 10,shows that model 6 has the smallest overall 

residual sums of squares and mean squared error. While, as shown for ponderosa pine and 

Douglas-fIr in Figures 19and 20, the lines are somewhat similar. fu addition to having the 

smallest residual sums of squares, model 6 only requires that 3 coefficients be computed 

(compared to 6 coefficients for model 10). 

Stump model 

Table 12compares the residual sum of squares (RSS) of the four stump models tested. 

The model S4 consistently had a much smallerRSS comparedto the other three models. The 

general hyperbolic model, S2, did quite poorly. Residuals from models SI, S2, and S3 all show 

significant correlation with DBTBH. The models SI, S2, and S3 all showed signifIcant 

correlation with DBTBH or DBH. The additionof the exponent as a function of DBTBH in model 

S4 eliminated this correlationand reduced the overallcorrelationof predictedwith residual relative 
bark ratios. 

This extensive look at conifer bark taper has resulted in the recommendationof two new 

models for bark taper. For upper stems the adjustedhyperbolicmodel, Y6, is recommended and 

for stump bark taper the power model S4 is recommended. Both represent distinct improvements 

in the way bark taper estimates have been handled in previous studies. 
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Table 1. Hyperbolic bark taperequationsevaluated,where Y is the 

predictedbark ratio D~~H' Double bark thickness is then 
predicted by multiplyingY by DBTBH. 

No. I	 Hyperbolic ratio (Grosenbaugh 1974,option 2) 

Y, =(g:?~)(2 -(~)) 
No.2	 No.1 with coefficientfitted to data (Brickell 1970,option 2) 

Y - (.ooIl b2-1 

2 - DBH)( b2- (g:?~))

No.3 Brickelloption3


Y =(OOB.)
bl b2 - 1 b4


3 DBH b - (OOB b3 

( 2 DBH) )


No.4 Brickell option4


Y4 ~ (g:?~t(~~iW)) 
No.5	 Variant between Brickell'soptions 3 and 4 

Ys =(g:?~t(b2~~)r
No.6 Adjustedhyperbolicratio


OOB

)bS 1 

Y - OOB b2 - 1 DBH­
(( ) 

6 - (DBH) (b2 -($lb3) - DRTRH 

for DOB > Dmin and Y6 =Fmin otherwisewhere Dmin 
and Fmin denote the coordinatesof the minimum of th 
above function. 
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Table 2. 

No.7 

No.8 

No.9 

No. 10 

Segmentedpolynomialbark taper equationsevaluated, 

where Y is the predictedbarkratio D~~H" Double bark 
thickness is then predictedby multiplyingY by DBTBH. 

Localizedtwo-segmentedpolynomialon relative height 

(Maguireand Hann 1990)
HT 

Let X =THT and 

al = bi + h2 (6:~ b3 (m~f 
then 

Y7= 1 + zl +al z2 +a2z3 

for 

= 1 (X - 1) 1 + (k -X) - I 
Zl { k - 1 [ k - 1 ] } 

Zz=X + 1 
(X - 1) X + k (k - X) -X 

{ k-l [ k-l ] } 

k (X - 1) 2 X - k + k (k - X) - xzZ3 =XZ+ 1 
{ k-l [ k-l ] } 

withk =0.3and1=1for X ~ k andzerootherwise.The 

coefficientsa2, bl, b2andb3 tobe estimated. 

Localizedtwo-segmentedpolynomialon relativediameter
DOB 

Model as above except X = 1 - DBH. 

Two-segmentedpolynomialon relativediameter (Max and 

Burkhart 1976). 

Y9=bl (X-l)+b2(X2_1)+b3(al-X)211 

where X =1 - ~~~, 11= 1 for X S a1 (zero otherwise), 

and ai, b1, b2 and b3 are coefficients to be estimated. 

Three-segmentedpolynomialon relativediameter (Max and 

Burkhart 1976). 

Y 10 = Y9 + b4 (a2 -X)2 12 

where Y9 is defined above, 12= 1 for X S a2 (zero 

otherwise) and a2 and b4 are additionalcoefficients. 
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Table 3.	 Models considered for predicting the relative bark thickness at stump, Y, 

where DOB is the diameter outside bark at the stump and DBHOB is the 

stump. 

Grosenbaugh's (1974) bark option 1 

DOB 
YS1= DBH	 (51) 

Grosenbaugh's (1974) bark option 25: 

(52) 

YS2=(~)(2 - (~)J 
A simplelinear model: 

(DOB -YS3 = 1 + cl DBH 1) (53) 

where c1 is a coefficient . 

The above linear model expanded by a power computedfrom the bark thickness at 

breast height: 

YS4 = 1 + cl (~~ - 1JC2 + c3 DBTBH) 
(S4) 

where Cl, C2,and C3are coefficients estimated from the data. 

5 Seefootnotenumber3 
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Table 4: Number of trees by Species and Datasets: 

SPECIES & NO. OF 
DATASET TREES 
Ponderosa Pine 

COOP 197 
DOLPH 141 
MILL 177 
ALL 515 

Sugar Pine
COOP 65 
DOLPH 62 
MILL 54 
ALL 181 

Douglas-Fir
COOP 186 
DOLPH 44 
ALL 230 

White Fir 
COOP 352 
DOLPH 313 
MILL 161 
FIRSTUDY 76 
ALL 902 

Red Fir 
COOP 36 
MILL 148 
FIRSTUDY 562 
REGION6 273 
ALL 1019 

Incense Cedar 
COOP 81 
DOLPH 189 
MILL 54 
ALL 324 
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Table 5. Number of trees, mean, minimum, and maximum diameter at breast height and total 
height used to fit bark taper models by species. 

Diameter Height 
Number 

SPECIES of trees Mean Min Max Mean Min Max 

Ponderosa pine 515 21.1 5.5 60.2 100.7 18.0 202.0


Sugar pine 181 24.1 3.5 62.5 94.8 9.0 204.0


Douglas-fir 230 15.4 5.5 31.2 86.7 25.5 150.6


White fir 902 17.6 5.5 62.9 80.2 18.6 204.0


Red fir 1019 20.9 3.0 57.4 85.6 10.7 195.0


Incense-cedar 324 13.8 3.4 50.8 49.5 7.4 155.0 

Table 6. Coefficients calculated for each hyperbola model. 

MODEL 
SPECIES # bj b2 b3 b4 bs 

Ponderosa Pine	 2 2.05347* 
3 .172435* 1.00677* .029665* .649123* 
4 .095474 1.31635 
5 .349935 1.09045 .388315 
6 2.85323 6.18840 .150480 

Sugar Pine	 2 3.35449 
3 -.021007* 1.01705* .031161* 1.10561* 
4 .219662 1.46440 
5 .679999 60.7655* 43.2687* 
6 4.93961 443.812* .098117 

Douglas-Fir	 2 1.65893 
3 .721122 8.01472* 11.3072* 3.89232* 
4 .193696 1.27256 
5 .614854 1.00847 .150581 
6 2.83504 13.6250 .055268 

White Fir	 2 1.79431 
3 .186981* .989607* -.062291* .572898* 
4 .077587 1.28022 
5 .250571 1.14080 .575405 
6 2.67181 5.82073 .090351 

Red Fir	 2 3.46315 
3 .256430 .944620 -.450786 .313750 
4 .177066 1.48455 
5 .641516 42.6754* 31.7995* 
6 6.16610 52.9442 .095993 

IncenseCedar	 2 2.43416 
3 .200062* .996129* -.012814* .715154* 
4 .381861 1.46319 
5 .751977 1.00961 .105277 
6 3.60876 9.34989 ..060086 
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Table 7. Coefficients calculated for each segmentedpolynomial model. 

SPECIES 
Ponderosa Pine 

MODEL# 

7 
8 
9 
10 

al 
-2.83552 
-2.68503 

.352847 

.174750 

112 
-.205678 
-.133710 

.921401 

a3 
.017598 
.011663 

5.91209 
4.50627 

bl 

.173569" 
49.8355" 

-.649957 
-27.2028" 

4.10060 
7.66930 

b4 

27.5576" 

SugarPine 7 
8 
9 
10 

-2.68484 
-2.39568 

.235572 

.039684 

-.185314 
-.080486 

.938852 

.015244 

.006466 
5.56146 
3.75759 

-.164997 
73.5727" 

-.501945 
-39.4965" 

5.78076 
115.620" 39.5929" 

Douglas-Fir 7 
8 
9 
10 

-4.34707 
-3.94069 

.215982 

.185933 

.249995 

.085076 

.948954 

-.012264 
-.002958 

5.48281 
5.56035 

-.155540 
38.3031 

-.396021 
-20.5246 

9.47537 
10.8073 20.4324 

White Fir 7 
8 
9 
10 

-3.11532 
-2.81758 

.386240 

.226295 

-.077110 
-.143934 

.923448 

.010508 

.011142 
5.30685 
4.85128 

.387050 
52.2488 

-.757016 
-28.4194 

4.13236 
5.21484 28.7965 

RedRr 7 
8 
9 
10 

-2.07456 
-1.73861 

.206937 

.124518 

-.140579 
-.222968 

.941632 

.009701 

.015331 
4.23880 
3.34266 

-.298995 
55.9460 

- .433534 
-30.0884 

6.05364 
11.7623 30.0820 

Incense Cedar 7 
8 
9 
10 

-3.42176 
-1.96023 

.242376 

.214742 

-.163537 
-.293174 

.968996 

.024326 

.027806 
6.03113 
3.47811 

-.451194 
87.0817 

-.235204 
-45.3019 

5.24302 
5.56182 45.2831 
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Table 8. Residual Sum of Squares (RSS) for the differentBark Models by Species and
Datasets: 

HYPERBOLIC MODELS 

SPECIES & NO.OF Model# Model# Model# Model# Model# Model# 
DATASET OBS. 1 2 3 4 5 6 

Ponderosa Pine 
COOP 1232 42.40 42.10 33.30 33.80 33.30 29.70 
DOLPH 836 8.47 8.56 5.54 5.40 5.54 5.05 
MILL 673 17.37 17.52 13.91 14.08 13.92 13.07 
ALL 2741 68.30 68.22 52.75 53.27 52.73 47.86 

Sugar Pine 
COOP 424 18.41 14.81 12.53 12.49 13.27 11.02 
DOLPH 351 2.53 4.12 2.56 2.73 4.59 3.00 
MILL 242 9.89 8.55 7.55 7.65 8.27 6.40 
ALL 1017 30.83 27.49 22.64 22.87 26.13 20.95 

Douglas-Fir 
COOP 1164 27.30 26.50 18.90 20.70 18.90 17.60 
DOLPH 237 3.32 2.65 1.4 7 1.43 1.48 1.41 
ALL 1401 30.70 29.14 20.37 22.16 20.41 19.04 

White Fir 
COOP 2048 64.10 66.20 49.60 50.29 49.60 45.40 
DOLPH 1988 24.90 21.90 15.50 15.22 15.50 15.40 
MILL 514 11.69 11.34 9.87 9.88 9.87 10.26 
FIRSTUDY 441 6.70 6.05 4.12 4.12 4.11 3.88 
ALL 4991 107.40 105.48 79.09 79.51 79.08 74.91 

Red Fir 
COOP 178 5.53 4.64 3.34 3.63 4.07 3.23 
MILL 452 12.80 9.90 9.10 .9.20 9.70 9.15 
FIRSTUDY 3607 68.80 64.00 44.00 46.80 60.60 42.50 
REGION6 1367 43.80 31.70 29.40 30.40 29.60 30.51 
ALL 5604 130.60 110.35 85.84 90.03 104.04 85.38 

Incense Cedar 
COOP 355 6.65 6.14 5.66 5.76 5.66 5.26 
DOLPH 844 7.89 8.48 6.03 6.16 6.03 4.91 
MILL 114 6.78 5.79 5.41 5.69 5.42 5.72 
ALL 1313 21.32 20.41 17.10 17.61 17.11 15.89 
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Table 9. Residual Sum of Squares (RSS)for the different Bark Models by Species and
Datasets. 

SEGMENTED POLYNOMIAL MODELS 

SPECIES & NO.OF Model# Model# Model# Model# 
DATASET OBS. 7 8 9 10 

Ponderosa Pine 
COOP 1232 38.30 34.70 34.70 33.10

DOLPH 836 11.44 5.61 5.60 5.63

MILL 673 17.78 14.10 14.31 13.88

ALL 2741 67.50 54.40 54.63 52.61


Sugar Pine
COOP 424 14.46 12.90 12.77 11.67

DOLPH 351 6.92 2.88 2.93 3.73

MILL 242 7.48 7.11 7.14 7.07

ALL 1017 28.87 22.88 22.84 22.46


Douglas-Fir 
COOP 1164 19.40 19.4 19.3 19.1

DOLPH 237 3.36 1.39 1.43 1.38

ALL 1401 22.75 20.75 20.76 20.48


White Fir 
COOP 2048 59.2 52.4 52.0 49.8

DOLPH 1988 27.3 16.2 15.9 15.6

MILL 514 11.55 9.37 9.89 9.83

FIRSTUDY 441 4.66 4.19 4.20 4.12

ALL 4991 102.70 82.07 81.99 79.29


Red Fir 
COOP 178 3.96 3.57 3.49 3.30

MILL 452 9.72 9.10 9.2 9.1

FIRSTUDY 3607 48.99 44.60 45.6 44.5

REGION6 1367 37.07 28.28 29.3 29.2

ALL 5604 99.76 85.56 87.59 86.07


Incense Cedar 
COOP 355 6.99 5.83 5.70 5.64

DOLPH 844 12.93 5.75 6.10 6.06

MILL 114 6.17 4.94 5.33 5.35

ALL 1313 26.10 16.51 17.13 17.05
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Table 10. Coefficient valuesfor calculation of Rmin for California conifers. 

SPECIES a 

Ponderosa pine 9.241 

Sugar pine 9.241 

Douglas-fir 15.078 

White fir 10.098 

Red fir 13.388 

Incense cedar 15.883 

Table 11. Coefficients calculated for stump bark models. 

SPECIES Model# bI b2 b3 
Ponderosa Pine 83 1.99610 

84 1.73416 0.0* 0.475413 

Sugar Pine 83 0.813498 
84 1.0* 0.0* 0.678624 

Douglas-Fir 83 1.95171 
84 1.0* 0.0* 0.397823


White Fir 83 1.19022

84 1.0* 0.0* 0.555289


Red Fir 83 1.23417

84 0.880132 0.260076 0.225097


Incense Cedar 83 2.23461

84 1.87591 0.559340 0.171258


* fixed 

Tabl~ 12. Residual sum of squares (RSS) for the different stump bark models by
specIes. 

No. of Model# Model# Model# Model# 

SPECIES Obs. 81 82 83 84 

Ponderosa Pine 462 124.37 114.86 107.18 85.18 

Sugar Pine 128 13.60 28.25 13.80 10.83 

Douglas-Fir 189 32.90 32.21 29.06 21.92 

White Fir 856 83.48 180.26 82.36 70.81 

Red Fir 1002 68.33 223.06 65.41 54.99 

Incense Cedar 300 84.63 74.38 48.69 46.05 
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Figure 1.	 Illustration of 3 bark options (G1, G2, and G3) provided by STX 
(Grosenbaugh 1974) 
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Figure 2.	 Bark ratio for measurements on 352 white fir trees with

Grosenbaugh's bark option 2 for reference.
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Figure 3.	 Single parameter (Y2) vs. 4 parameterhyperbola (Y3) for 
ponderosa pine 
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Figure 4. Single parameter (Y2) VS. 4 parameter hyperbola (Y3)
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Figure 5. Residual (observed-predicted) plots for 4-parameter hyperbola

(Y3) bark ratio for Douglas-fir.
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Figure 6. Residual (observed-predicted) plots for 4-parameter hyperbola

(Y3) bark ratio for Ponderosa Pine.
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Figure 7.	 Residual (observed-predicted) plots for single-parameter hyperbola

(Y2) bark ratios for Douglas-fir. 

0.8


. .. ,

'.


,- :.	 '.


Residuals	
, . " " . 

. , ' 
"


. '.' "

,'J


. ..,' .~


"

, ,
 "


, .

. ~, .. .


-0.5

0 ~ 1.0


~


Figure 8. Residual (observed-predicted) plots for single-parameter hyperbola 
(Y2) bark ratio for Ponderosa Pine. 
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Figure 9.	 Adjusted hyperbola (Y6) for Douglas-fir (DBTBH = .5, 1, 2, 
and 4 inches). 
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Figure 10.	 Adjusted hyperbola (Y6) vs. 4-parameter hyperbola (Y3) 

DOuglas-fir (DBTBH = 2.3 inches). 
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Figure 11. Residual (observed-predicted) plots for adjusted hyperbola

(Y6) bark ratios for Ponderosa pine.
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Figure 12. Residual (observed-predicted) plots for adjusted hyperbola

(Y6) bark ratios for Douglas-fir.
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Figure 13.	 Illustration of the relative height model using Maguire and

Hann's coefficients (Y7m) and using new coefficients (Y7)

for Douglas-fir.
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Figure 14.	 Maguire and Hann's model (Y8) on relative diameter vs.

two-segmented polynomial (Y9) for Red Fir.
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Figure 15.	 Two-segmented polynomial (Y9) on relative diameter vs.

three-segmented polynomial (Y10) for Ponderosa pine.
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Figure 16. Two-segmented polynomial (Y9) on relative diameter vs. 
three-segmented 

1 

polynomial (Y10) for Douglas-fir. 
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Figure 17. Residual vs. predicted bark ratios 2-segmented polynomial

(Y9) for Douglas-fir.
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Figure 18. Residual vs. predicted bark ratios 3-segmented polynomial

(Y10) for Douglas-fir.
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Figure 19. Adjusted hyperbola (Y6) vs. three-segmented 
ponderosa pine (DBTBR = 2.3 inches). 
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Figure 20. Adjusted hyperbola 
Douglas-fir (DBTBH 

1 

(Y6) vs. three-segmented 
= 2.3 inches). 
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Figure 81.	 Residuals vs. predicted bark ratio for ponderosa pine using stump
model 1. 
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Figure 82. Residuals 
model 2. 

vs. predicted bark ratio for ponderosa pine using stump 
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Figure S3. Residuals vs. predicted bark ratio for ponderosa pine using stump 
model 3. 

4 

. . 
.' .' " 

Residuals " ~(~ ;'~'f~:~~i "~...;:::';,..:,'. .' 'j . 
, """~"+ ..'~' I ,­ ~ --

. . 
: 

,.' ,~.:Ht:""(''''I~,I\:!",., ;'. ' 
. ", :.:. ~!'~:~,:., ':.". :..: ,.' ~ : ..' 

-4 
1 Predicted 2.7 

Figure S4. Residuals 
model 4. 

VB. predicted bark ratio for ponderosa pine using stump 
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