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The predictive models and proceduresused in the Forest Stand Generator (STAG) 

ABSTRACT 

The Forest Stand Generator, STAG, is a PC based program that uses statistical routines to produce 

complete stand descriptions comprised of individual tree measurements of diameter at 4.5 feet 

above ground (denoted hereafter as diameter at breast height, or DBH), total height, height-to

crown base, species and tree expansion factor. STAG is :versatileenough to work with several 

types of data and still produce complete stand descriptions. This achievement makes it possible to 

utilize the California Conifer Timber Output Simulator (CACTOS, Wensel and Others, 1986, 

1987) for simulation of tree growth and mortality even though the initial datasets could not have 
been used with CACTOS. 
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INTRODUCTION


The interior forests of Nonhern California are typically comprised of mixed conifer species of 

multiple ages and sizes. Inventory proceduresfor these lands are varied, as is the experience in the 

rest of the U.S. There are several common inventory procedures that this work addresses. One 

typical procedure is to measure DBH and to subsample tree heights and height-to-crown base. 

This procedure yields what can be considered a "missingdata" case. Another common procedure 

is to record the number of trees by diameterclasses. This yields stand table data which is a discrete 

approximation of the continuous diameter distribution. In some cases only stand summary 

statistics are recorded such as the basal area per acre (basal area is the cross-section of trees 

measured at 4.5 feet above ground in square feet on a per acre basis) and number of trees per acre. 

In these latter two cases no individual tree informationis recorded,just overall stand parameters. 

A common use of inventory data is for simulationof future growth and yield of stands from which 

the data were derived. Our goal is to ensure that the three forms of inventory data listed above can 

be made to conform to the requirements of the California Conifer Timber Output Simulator, 

CACTOS (Wensel and others 1986, Wensel and Biging, 1987). CACTOS simulates the growth 

and development of individual trees and requires that species, DBH, tree height (H), height-to

crown base (HCB) or live crown ratio, and tree expansion facto~ be supplied for each individual 

tree making up the stand description. When all these data are present we refer to them as a stand 

description which is comprised of complete individual tree records. To take full advantage of the 

simulation capacity of CACTOS, these variablesshould be measured for all trees. 

When data sets are not complete STAG can be used to produce complete stand descriptions for a 

wide class of inventory procedures (Biging, Meerschaen, and Robards 1991). This paper will 

discuss the estimation procedures used in STAG to (1) fill in missing measurements of tree height, 

height-to-crown base or both; (2) generate stands from summary statistics; and (3) conven stand 

table data, numbers of trees by DBH classes and species, to individual tree records so that these 

stand descriptions (comprised of complete individual tree records) can be analyzed by CACTOS. 

We also discuss the predictive equations and analytic procedures used to produce complete stand 

descriptions for these three differingcategoriesof data availability. 

4 Tree expansion factor is defined as the numberof treesper acre that the sample tree represents. 
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DATA

Data for this study were provided by the Northern CaliforniaForest Yield Cooperative growth and 

yield project. These data were collected from 710 permanent plots located throughout the mixed 

conifer region of northern California. Variables measured for each tree included species, DBH, 

total height, and height-to-crown base. The permanent plots were established in 1978-79 and a 

five year remeasurement was made in 1983-84. These plots were typically 1I51hacre in size, but 

contained subplots used to measure submerchantabletrees. Usually trees greater than 11.0 inches 

in DBH were measured on the full plot. Trees between 5.5 and 11.0 inches in DBH were 

measured on a 1/l0th acre subplot and trees between 1.5and 5.5 inches in DBH were measured on 

a 1I20thacre subplot. There were some variations in the class limits depending upon the company 

collecting the data. The five year remeasurementdata were used for the models developed in later 

sections of this paper. Figure 1 shows the location of the permanent plots by township and the 

Appendix provides summary statisticsfor much of the data used in this study. 
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EST 1MATION PROCEDURES


STAG is a PC based program that uses statistical routines to produce stand descriptions comprised 

of complete individual tree measurements of DBH, total height, height-to-crownbase, species and 

tree expansion factor. There are three main data analysisroutines in STAG and distinct statistical 

procedures used in each corresponding to the three different classes of data availability (filling in 

missing data, converting stand table data, and generatingstands from summary statistics). Each of 

the three routines are described below. In this section we define estimation techniques for 

overstory trees. We define overstory trees as those trees greater than a defined threshold value of 

either 5.5 or 11.0 inches in DBH. The species are denoted throughout the paper using the species 

codes given in Table 1. These species are classified into 8 different species groups during the 

simulation process as shown below in Table 2. 

Table 1. Species codes and names. 
Species 

Species Code Common Name Abbreviation ScientificName 

01 ponderosa pine PP Pinus ponderosa (Laws.) 
02 sugar pine SP Pinus lambertiana (Doug!.) 
03 incense cedar IC Libocedrus decurrens (Torr.) 
04 Douglas-fir DF Pseudotsuga menziesii (Mirb.) Franco 
05 white fir WF Abies concolor (Gord. and Glend.) Lind!. 
06 red fir RF Abies magnifica (A. Murr.) 
07 lodgepolepine LP Pinus contorta (Doug!.) 
08 white pine WP Pinus monticola (Doug!.) 
09 Jeffrey pine JP Pinus jeffreyi (Grev. & Balf.) 
10 miscellaneousconifers CM n.a. 
11 chinquapin CH Castanopsis chrysophylla (Doug!.) A. DC. 
12 black oak BO Quercus kelloggii (Newb.) 
13 tan oak TO Lithocarpus densiflorus (Hook. & Am.) 
14 misc. hardwoods HM n.a. 
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Table 2. Speciesgroupsusedformodellingin STAG. 

Species Species Group Sp. Group Species (and Codes) Included in Group

Group No. Name Abbreviation

1 Ponderosa Pine PP PP(OI), JP(09), LP(07)

2 Sugar Pine SP SP(02), WP(08)

3 Incense Cedar IC IC(03)

4 Douglas-fIr DF DF(04), CM(lO)

5 White Fir WF WF(05)

6 Red Fir RF RF(06)

7 Other Hardwoods OH CH(11), TO(13), HM(14)*

8 Black Oak BO BO(12)


*The OH equations were derived mainly from CH(II), and TO(13)


ESTIMATING TOTAL HEIGHT


STAG can be used to fill in where tree heights, heights-to-crown base, or both are missing


provided that the species, DBH, and expansion factors exist for all trees on the plot. Models [1]


and [2] are used to estimate missing heights for overstory (> 5.5 inches DBH), and understory


trees (~5.5 inches DBH), respectively.


Heights for overstory trees whose diameter exceeds 5.5 inches are estimated as a function of DBH,


stand basal area, and elevation as:


[1] lIo = bo+ bl.vDBH +b2.vBA6+b3.E2 

where lIO =the estimated total height (ft) for overstorytrees 

BA6 =the stand basal area (ft2) in trees greater than 5.5 inches in DBH,

DBH =tree diameter at breast height (DBH > 5.5 inches)

E =stand elevation in feet.


The coefficients bO'bI>b2' and b3 were estimated for species groups 1-8 (see Table 2) and an all 

species combined category. Sample sizes for each species ranged from a low of 340 observations 

for black oak to over four thousand observations on Ponderosa pine and white fir. All standard 

errors were in the range of 9 - 14 feet. Other model forms which included site index were 

evaluated, but did not outperform this model. Coefficient values and fit statistics are presented in 

Table 3. 
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The model used for predicting heights of understorytrees is: 

" 

[2] H" =4 5 + Hs.s - 4.5 .DBH 
u. 5.5 

" 
where Hu =the estimated total height (ft) for understory trees 

whose diameter is in the range 0 < DBH :::;5.5 
H5.5 =the predicted height (ft) of a 5.5 inch DBH tree from equation [1] 

Model [2] simply constrains the predicted height of understory trees to be between 4.5 feet and the 

height of a 5.5 inch DBH tree as predictedby model [1]. We used this constrained equation rather 

than a statistical model to ensure that the understory height predictions would smoothly join the 

overstory equation. 

Table 3. Coefficients and fit statisticsfor the total height model [1] for overstory trees. 

Species Group Sy.x N bo bi b2 b3 
and number 

PP [1] 12.144 4173 -38.673 27.073 1.809 -7 x 10-7 
SP [2] 11.215 1070 -36.456 28.328 0.999 -6 x 10-7 
IC [3] 9.406 2260 -28.246 22.713 0.709 -6 x 10-7 
DF [4] 11.488 2458 -34.586 27.400 1.446 -6 x 10-7 

WF [5] 10.700 5167 -40.147 29.353 0.829 -4 x 10-7 
RF [6] 11.397 501 -36.656 28.605 1.005 -5 x 10-7 
OH [7] 13.218 273 -38.731 15.614 2.621 0 
BO [8] 14.421 340 -2.386 13.237 1.712 -8 x 10-7 

All 13.488 16242 -35.36 27.61 1.03 -6 x 10-7 

ESTIMATING HEIGHT -TO-CROWN BASE 

To estimate height-to-crown base (HCB) for overstory trees with DBHs > 5.5 inches, a model 

form based on the logistic equation was chosen so that HCB would be constrained to be between 

zero and total height. The form of the model selectedwas: 

2 
[3] HCBo = H ( 1 - e- (cO+ cI.ln BA6 + C2.(DBH/H)) ) 
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-

where HCBo = predicted height (ft) to the base of the crown for overstory trees (> 5.5 

inches in DBH), 
H = is total height (ft), 
DBH = diameter at breast height (nearest0.1 in), 
cO,c1, c2 = coefficientsestimatedfor each speciesgroup, and 
BA6 is as defined above. 

Sample sizes were the same as in estimating the total height model, but standard errors were 

slightly less ranging between 9 - 11feet. Coefficientsand fit statisticsare presented in Table 4. 

Table 4. Coefficients and fit statisticsfor the height-to-crownbase model [3] for overstory trees. 

Species 
Group and Sy.x N Co C} C2 
number 
PP [1] 10.375 4173 1.027 -0.112 1.925 
SP [2] 9.454 1070 1.222 -0.130 1.400 
IC [3] 8.703 2260 1.119 -0.097 0.974 
DF [4] 11.140 2458 1.369 -0.162 1.833 
WF [5] 10.856 5167 1.298 -0.154 1.831 
RF [6] 11.089 501 1.450 -0.160 1.022 
OH [7] 9.188 273 1.727 -0.184 0.535 
BO [8] 10.315 340 1.313 -0.133 0.745 

All 10.580 16242 1.323 -0.146 1.414 

Height-to-crown base of understory trees was estimatedas: 

[4] HCBu =Co+ cl.DBH + c2.H + c3.N6 

-
where HCBu = predicted height (ft) to the base of the crown for understory trees (:S;5.5 

inches in DBH), 
H = is total height (ft), 
N6 = number of trees per acre with DBH > 5.5 inches, and 
co' c}>c2 = coefficientsestimatedfor each speciesgroup. 
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Table5. Coefficientsandfit statisticsfor theheight-to-crownbasemodel[4]for understorytrees. 

Species 
Group Sy.x N Co Cl C2 C3 I b 

no. 
pp [1] 3.393 1377 2.727 1.737 0.166 -0.0181 1.3971 
SP [2] 3.512 224 4.214 1.110 0.252 -0.0192 1.2756 
IC [3] 3.097 996 1.764 0.894 0.197 -0.0069 1.5468 
DF [4] 4.753 960 1.659 2.567 0.188 -0.0168 2.0209 
WF [5] 3.901 2470 0.866 1.468 0.295 -0.0129 1.9335 
RF [6] 3.741 131 3.361 0.437 0.294 -0.0132 2.0591 
OH [7] 3.909 75 9.145 -0.599 0.411 -0.0165 1.0384 
BO [8] 4.210 90 1.290 -0.032 0.447 -0.0153 2.2357 

All 3.988 6323 1.922 1.201 0.302 -0.0159 1.97 

For model [4] we observed that variance increased with increasing predictions of height-to-crown 

base. We formulated a simple model for this relationshipas: 

[4b] crfu = b.HCBiu 

where HCBiu = predicted height (ft) to the base of the crown for the ithunderstory tree 
(::;5.5 inches in DBH), 

2 
criu = the variance around the regressionof the height-to-crownbase model [4] 

for the ithunderstory tree (i =1to n) 

b = a coefficientestimatedfor each speciesgroup 

The procedure for adding stochastic errors is discussed in more detail in a later section. Briefly, 

we predict height-to-crown base for understory trees with DBHs ::;5.5 inches using equation [4]. 

Stochastic errors are then added to the prediction. We assume the stochastic errors are distributed 

normally with mean zero, and variance as given in equation [4b]. The estimated values of beta (b) 

in equation [4b] are given in the Table 5 above. 

With these equations it is possible to "fill in" or estimate missing values of height and height-to

crown base for individual trees. The only exogenous variable that needs to be supplied for each 

stand is elevation. Basal area (BA6) can easily be computed directly by summing the per acre 

individual tree basal areas obtained from the individual tree DBHs and expansion factors contained 

in the stand description file. Number of trees (N6) can easily be calculated from the expansion 

factors associated with individual trees in the standdescriptionfIle. 
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CONVERTING MERCHANT ABLE HEIGHTS TO TOTAL HEIGHTS 

The four different types of tree height measurementsallowedin STAG include: 1) total heights, 2) 

heights to a merchantable top G;6.5 in. d.i.b.), 3) heights measured to whole (16.5 ft.) logs, or 4) 

heights measured to half logs (8.25 ft.). Within a STAG stand description file comprised of 

individual tree measurements all heights must be of the same measurement standard. CACTOS 

requires total heights for individual trees, but STAG can manipulatemerchantable height to obtain 

an estimate of total height. STAG uses a taper equation to solve for total height for the six major 

conifer species (species group numbers 1-6 in Table 2) whenever height to a merchantable top or 

number of 16.5 ft. logs is supplied5 . 

The equation used to convert merchantable height (MH) to total height (H) is derived from a 

sigmoid taper equation (Biging, 1984). The total height estimate obtained from inverting the taper 

equation is: 
3 

[5]	 H' = MH.(}..) 
(1 - exp[(d/DBH - bl) / b2J]3 

where	 H' = the predicted total tree height (ft.) estimatedfrom merchantableheight 
A = 1-exp(-bl/b2) 
DBH =the diameter at breast height (in.) 
d =the merchantabletop diameter ($;6.5") 
MH = the height to the merchantabletop diameter(ft.) 
exp(x) = 2.71828... raised to a power of 'x', and 
bl,b2 are species specificcoefficientsgiven in Table 6 

Table 6. Coefficient estimates by species for equation [5] from Biging (1984). 

Species N bl b2 

and spp. codes 

PP [1] 2014 1.019589 0.335666 

SP [2] 692 1.06932 0.415632 

IC [3] 541 1.071343 0.472157 

DF [4] 1588 1.029288 0.334012 

WF [5] 2645 1.092615 0.365295 

RF [6] 312 1.075880 0.353784 

5The height conversion process is not intended to encourage the measurementof other than total 
heights. Rather, it is intended to allow the use of older inventorydata. 
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If the heights of trees are entered as number of logs, the program fIrst converts these to heights to 

the given merchantable top using equation [6], and then uses equation [5] to predict total heights. 

The equation to estimate height to the merchantable top (MH) when only the number of logs is 

known is given by: 

[6] MH=[SH+~J + NLOGS.LL 
where MH =the estimated height to the merchantabletop diameter (ft.) 

SH =stump height of the tree = 1.5ft. 
LL =log length in feet (16.5 or 8.25 feet)

NLOGS =the number of logs of length LL for a tree


STOCHASTIC ERRORS 

When fIlling in missing data (height or height-to-crownbase) or generating stands from summary 

statistics (discussed in a later section) the user can either make a deterministic or a stochastic 

prediction of missing values. Choosing stochasticerrors means that a random value will be added 

to the prediction to reflect that an individual tree's dimensions cannot be predicted with certainty. 

Thus, a random value will be added or subtractedfrom the prediction. The random value is drawn 

from a normal distribution with mean zero and variance equal to the estimated variance around the 

regression (S;'x) as given in Tables 3 and 4. In the case of the understory height-to-crown base 

model [4], the distributional mean is zero, but the variance is proportional to the predicted height

to-crown base (see equation [4b]). If random errors are not requested, then the missing value is 

set equal to the model prediction (deterministic prediction). If random errors are not added, all 

predicted heights and crown ratios will be identical for a given diameter of a particular species, 

given that basal area and elevationare the same. 

PARAMETER UPDATING 

If the user wants to incorporate knowledge of a local sample into the height model coefficients a 

Bayesian update of the first two parameters of the height model [1] is possible. Alternatively, an 

ad hoc weighting scheme patterned after the linear composite estimators (Burk and others 1982) 

can be chosen. In both cases only the first two parameters (bo, and bI) are allowed to be updated 

because the effects of elevation (E) and density (BA6)can not be adequately described with a local 

sample. 

The ad hoc approach adjusts the amount of change to the model parameters by a constant ratio (k) 

between 0 and 1. A weight of k equal to zero causes the update routine to abort (no update), while 
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a weight of k equal to one places all the emphasison the local sample to determine the coefficient 

values to be used for the height predictionequations. This ad hoc weightingprocess is given as: 

[7] ~ = K-I'~L+ (I-K)'~D 

...... 

U U bu U .
where ={b 0' bi } where 0 and bi are the updated parameter estImates 

K =the ad hoc weight (0 ::;k ::; 1) 
I =an identity matrix (2x2) 

D =the databaseestimate of the parameters(2x1) 
L =the estimate of the parametersbased upon the local sample (2xl) 

We modified the true Bayesian method because in prior work (Van Deusen, 1984)we found that it 

worked poorly. With relatively small sample sizes the Bayesian update could result in large 

covariance terms in the local covariancematrix which could cause the updated parameter estimates 

to behave poorly. For example, the local parameterestimatescould indicate that both the data base 

slope and intercept coefficients should be increased over their database couterparts. A large 

negative covariance term in the local covariance matrix could force these two coefficients to move 

in opposite directions, regardless of the fact that both local parameterestimates were larger than the 

database estimates. Because of this we modified the Bayesian approach and have termed it a 

pseudo-Bayesian approach. The main difference between a Bayesian and a pseudo-Bayesian 

approach is that for the latter we utilize only the variance terms in the variance-covariance matrices 

of the local and database samples to avoidproblemsassociatedwith the covariance terms. 

The pseudo-Bayesian approach is more conservative than the ad-hoc procedure. If the local 

sample is small then the updatedcoefficientsfor the height predictioneqtiationare quite close to the 

database values. If, however, there is a large local sample, then the pseudo-Bayesian estimates are 

a compromise between the database values and those determined from the local sample. The 

pseudo-Bayesian update is given by: 
...... 

[8] ~ = W'~L+ (I-W)'~D 

where ~ {
U U

} h 
U U 

pda 
. 

= bo' bi were bo and bi are the u ted parameter estImates 

I =an identity matrix (2 x 2)

~D =the database estimate of the parameters (2xI)
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f3L = the estimate of the parameters based upon the local sample (2x 1) 
-I V-I -I 

V-I
W =the weighting matrix (2x2) = (VD+ L ) L 

vI} = the diagonal elements of the inverse of the variance matrix for the 
database parameters 

Vi..1 = the diagonal elements of the inverse of the variance matrix for the 
parameters based upon the local sample 

Van Deusen (1984) found that if the local estimate is of sufficient size it is often the best, but when 

uncenainty exists the ad hoc or pseudo-Bayes methods are reliable, with the pseudo-Bayes being 
conservative and of low risk. 

GENERATING STANDS FROM SUMMARY STATISTICS 

In cases where no individual tree measurementsare available or when only summary statistics are 

recorded by species it is possible to generate a facsimile stand description comprised of complete 

individual tree records based upon the summary statistics. With the knowledge of the summary 

statistics it is possible to generate a diameterdistributionas developed in a later section. Individual 

tree diameters can be sampled from this distribution. Tree height and height-to-crown base values 

are estimated from equations [1] through [4] to complete the facsimile stand description. The goal 

.	 of this methodology is to produce a facsimile stand descriptionof complete individual tree records 

that is plausible given the specified summarystatistics. 

Generation of the Overstory of Trees 

We will define overstory trees as those greater than a defined threshold value (usually 5.5 or 11.0 

inches in DBH), and understory trees as those at or below the thresholdvalue. We have developed 

separate approaches for generating overstory and understory trees to achieve better accuracy in 

predicting missing data values. 

The joint distribution of species, DBH, height, and height-to-crown base is formulated as a 

product of probability density functions (Van Deusen 1984,and Biging and Wensel 1987). This 

joint probability distribution for these overstory trees can be represented as a mixture of 
distributions as: 

S 
[9] p(D,H,HCB) = L p(Species).p(DBHISpecies)'p(HISpecies,DBH).p(HCBISpecies,DBH,H) 

s:1


where S =the number of species present in the stand
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The joint probability distribution of DBH, total height and height-to-crown base [p(D,H,HCB)] is 

factored as a product of three conditional distributions. The fIrst term on the right hand side is 

p(Species) which is the fraction of each species in the stand. This is easily specifIed by the user by 

supplying the number of trees per acre by species in the hypothetical stand. 

The three conditional distributions are for DBH, height and height-to-crown base. The first of 

these conditional distributions is that of diameter given species [p(DBHlspecies]. The conditional 

diameter distribution can be generatedfrom either a two-parametertruncated Weibull or a negative 

exponential distribution by relating the summary statistics to the parameters of these distributions. 

The first two moments of the Weibull distribution correspond to the average diameter of the 

species, and the quadratic mean diameter2of the specieswhich can be derived from basal area and 

number of trees for each species (see equation [13]). 

We found that the first moment (average diameter for a given species) could be accurately 

predicted as a function of the quadratic mean stand diameter, elevation and numbers of trees in the 

species. This is discussed more fully in a following section (see equation [12]). The user can 

generate a diameter distribution for each specieshavingknowledgeof only the number of trees and 

basal area in each species. Individual tree DBHs are then randomly generated using an inverse 

transformation method for either the two-parameterWeibullor the negative exponential. 

To randomly sample from this distribution we will consider it a probability density function, 

compute it's associated cumulative distribution function, and finally compute the inverse 

cumulative distribution function from which we may generate DBHs. Since the cumulative 

distribution function produces a probability and by definition probabilities are bounded between 0 

and 1 we may use uniformly distributed random deviates bounded between 0 and 1 to generate 

values for input into the inverse cumulativedistributionfunction. 

A second distribution, the negative exponential, was provided for the infrequent case where a 

balanced uneven aged condition exists within a stand. The details for the procedure of fItting the 

distribution and a list of the necessary stand summarystatisticsare provided in a section below. 

With either the Weibull or negative exponential distribution only unimodal distributions can be 

generated for a given species. In most cases there are too few trees of a given species to develop 

more complex distributional models. However, because we allow each species to have its own 

diameter distribution it is possible to build multi-modaldistributionsfor a stand. 
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Once the diameters are specifiedwith the diameterdistributionthe height and height-to-crownbase 

values are predicted with equations [1] and [3]. These later two equations correspond to the 

conditional probability distributions of p(H I Species, DBH) and p(HCB I Species, DBH, H), 

respectively. Elevation also needs to be supplied since it is an independent variable in the height 

prediction equation [1]. Random stochastic errors distributed as N(O,S~.x) for equation [1] or 

N(O, b Pi ) for equation [3] are added to the predictions if the random error feature has been 

selected. 

There are alternatives to the factorization approach utilized in this study. For example, the joint 

distribution of diameter, height, and height-to-crownbase could have been modeled as a trivariate 

distribution. We did not investigate this latter approach because we had relatively few measured 

trees on each of the remeasured permanent plots (usually less than 20). With a factorization 

approach there is the additionaladvantagethat any numberof speciescan be modelled. 

Weibull Distribution 

The Weibull distribution has been widely used in forestry applications for describing the diameter 

distributions of stands. This use stems both from the Weibull's shape and ease of estimation of 

parameters. Since the purpose of generatinghypothetical individual tree data from stand summary 

information is for use in CACTOS to project future yields, the data should be compatible to allow 
for transfer from STAG to CACTOS. Thus a truncation of 5.5 inches DBH is used since the 

CACTOS growth models are fit on data greater than 5.5 inchesDBH. The threeparameter Weibull 

may be reduced to the two parameter Weibull since the location parameter, typically called a, is 

zero. The two parameter truncatedWeibulldensity functionis given as (Van Deusen 1984): 

[10]	 f(x) =[~l [~f-1.e[(TC-XC)'b-C]
where	 f(x) =frequency of trees in diameterclass x, 

x =midpoint DBH of diameterclass; x ~ T, 
T =truncation DBH (5.5"), 
b andc =parameters>O. 

Deriving the band c coefficients 

To specify a particular distribution from this Weibull family, we need to define the band c 

parameters. The moment equationfor the two parametertruncatedWeibull is given as: 
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[11] 
Exr = bf.e(T Ib)C .[r(r/c+ 1) - c.b-(r+c). iT xr+c-l.e -(xlb)C.d x] 

where	 Exr =the expectation of the rth moment of x or DBH, 
nr/c + 1) = the gamma function of (r/c + 1). 

The first and second moments are used to simultaneously solve for the band c parameters. It is 

known from Cauchy's inequality that the arithmetic mean must be less than or equal to the 

quadratic mean stand diameter which is the squareroot of the equation [13] below. The arithmetic 

mean stand diameter is predicted as a fraction of the quadratic mean stand diameter where the 

fraction is constrained to be less than 1 through use of the logistic function. The arithmetic mean 

stand diameter is predicted as follows: 

(I-~o)
[12]	 . Dq 

D(l) = DBH =[~o + (I+e{-~J-/~2E-~3ln (Dq)-~t! _~-l)) ] 

where D(l) =the estimated DBH =the fIrst momentor mean stand diameter for a 

given species 

TI"q =quadratic mean diameter of trees for a given species> 5.5" DBH, 
N6 = number of trees for a given species> 5.5" DBH, 
E = elevation (ft.), and 
bo, ...,bs = the coefficientsestimatedfrom regression (see Table 7). 

Table 7. Coefficients and fIt statistics for the mean stand diameter model for species number 1-8 
combined. 

Species N MSE ~o ~1 ~2 ~3 ~4 ~5 
number 
[1-8] 2078 0.363 0.75637 -12.12687 -0.00018 3.62041 6.15495 56.31421 

The second moment is the quadratic mean stand diametersquared which is given by defInition as: 

[13]	 D(2) =~= 1.."DBHf = SBA6 
q n £..J I K' .SN6 
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where 0(2) = the estimatedsecondmomentor quadraticmean standdiameter 

squared (Dq2)of a given species, 
OBH~1 =OBH2 of the ith tree 

n =the number of trees on a plot 
K' =0.005454 which is a conversionfactor for basal area in square feet 

to diameter squared in square inches. 
SBA6 =basal area of trees for a given species> 5.5" OBH, 
SN6 =number of trees for a given species> 5.5" OBH 

The absolute difference between the two momentsgiven above and the predicted moments given an 

estimated b and c are combined into an overall error figure. This figure must be less than 5% 

(E%) of the respective moments. The error formula is: 

E%.O(l) -0E%.O(2) 
[14]	 E= 

2 

where	 E% = the percent error allowedin estimatingthe moment, and 
0(1), 0(2) are defined as above. 

Using ponderosa pine as an example, if the species basal area were given as 150 ft2 and the 

species number of trees per acre given as 300 then the maximum allowable error in finding the 

Weibull parameters would be: 

0.05.9.82 + ""0.05.91.68 =1.32 inches, E= 2 

where 9.82 is 0(1) and 91.68 is 0(2). When estimates of band c are obtained then predicted values 
of 0(1) and 0(2) are obtained and summed as: 

E_19.82-DO)I+-v'l91.68-d2)1
2 

where 0(1) and 0(2) are the predicted first and second moment respectively. If E is less than E 

then the estimates of b and c are close enough and the procedure stops, otherwise new estimates of 

the parameters are calculated and the process is repeated. 
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To begin the algorithm for determiningthe coefficientstwo predictiveequations are used to provide 

starting values for the parameters. These equations were fit using multiple linear regression for 

converged values. 

b =-1.260 + 1.183 . D(l) - 0.0018.D(2) 

c=8.112 - 0.543 . D(l) + O.013.D(2) 

Next a Newton-Raphson procedure is used to minimize E. If the Newton-Raphson fails to 

converge within 6 iterations then a grid search is used to minimize E. The Newton-Raphson 

procedure is much faster than a grid search and is quick to converge for most stands with mean 

stand diameters of about 14" DBH and above. The Newton-Raphson method generally does not 

provide stable estimates of the change in the c parameter necessary to minimize E, and thus 

influences almost exclusively the b parameter. Thus if the starting value for c is not close to 

optimum then a grid search will be necessary. 

Multiple minimums exist for the error surface,E, with respect to c while only one minimum exists 

with respect to b. Thus a decision to restrict the c parameter to its lowest minimum was made in 

order to produce the maximum variance for the distribution. This was done after examining 

permanent plot data for Northern California and noting the large variability over diameter classes 

which exists on a plot to plot basis. If in the future these stands approach a more even-aged 

structure then the program can be adjusted to reflect this by restricting the c parameter into the next 

largest minimum, thus reducing the variability over size classes. 

The grid search algorithm begins by searchingfor the minimum error over a course grid (increment

of 0.5) with respect to band c This course grid search is accelerated by retrieving the DO; and D(2) 

from two binary files. Next the range of the parameters are reduced to be around the minimum 

found in the course grid search, the increments for band care reduced to a third of their previous 

value, and a finer search is performed. Up to ten iterations of increasingly finer grid searches are 

performed. As with the Newton-Raphsontechniquethe convergencecriteria is that E be less than 

E. Once the grid search converges a fine tuning is performed where band care adjusted slightly 

so that the error in estimating the first moment is approximately the same as that of the second 
moment. 
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Estimatin{:DBHs 

The derivation for the inverse cumulative distribution function of the truncated two-parameter 

Weibull is as follows. The probability density function is integrated from the lower truncation 

point (T) to the diameter of interest (x). 

[15] 
FT(X) =J; [~l [~]C-1.e[(TC-XC).b-C]dt = [1- e(T/b)C.e-(x/b)c] 

where FT(X) =the cumulative number of trees between the lower truncation point (T), 
and the specified upper diameter (x) 

b and c =estimated constants 

This provides the cumulative number of trees up to the the diameter of interest. Generating a 

uniform random number between 0 and 1 and multiplyingit by the total number of trees gives us a 

value for F, we may then solve for the DBH by invertingthe above equation. 

[16] DBH =b. [(TIb)C-loge (1- FT(X»] lie 

Thus by generating a uniform random number (FT(X» we can use the inverse transform of the 

cumulative distribution function to estimatediametersat breast height. 

Negative Exponential Distribution 

The diameter distributions of "balanced"uneven aged stands (Meyer 1952) are often characterized 

as being distributed according to the negative exponential distribution. A typical method for 

applying the distribution to a stand is with the diminutionquotientor "Q" value (Rusch, Miller and 

Beers 1982, Davis and Johnson 1987). To obtain the number of trees in the next to the largest 

diameter class we would simply multiply Q by the number of trees in the largest diameter class. 

Thus for the next smallestdiameter class we would multiplyQ times the number of trees in the next 

largest diameter class or Q2 times the numberof trees in the largestdiameterclass. To compute the 

number of trees in each diameter class we need to specify Q, a range of tree diameters, their 

diameter class (i.e. 2"), and the number of trees in the largest diameter class. Unlike with the 

truncated Weibull distribution, we use the negative exponential distribution to simultaneously 

generate both overstory, and understory trees. 

The negative exponential distributionis given as follows: 

[17] SNn = ke-a.DCn 
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where	 §Nn =theestimatednumberof treesof a givenspeciesin nthdiameter class DCn, 
DCn =the nthdiameter class, and

a and k = coefficients.


To specify the distribution we need to define k and a which can be done by using Q, a value which 

may be more meaningful to a manager than the a and k coefficients of the negative exponential 
function. 

Derivin&the a and k coefficients 
The coefficient a is derived from the definitionof Q: 

= SNn-l - k.e-a.DCno1

SNn k.e-a.DCn


[18]	 Q --- - = ea.c 

"" 

where	 Q =the estimated diminution quotient 
SNn-l =the number of trees for a species in the next to the largest diameter class, 
SNn =the number of trees for a speciesin the largest diameter class, 
DCn-l =thenextto the largestdiameterclassofa givenspecies, 
DCn =thelargestdiameterclassof a givenspecies,and 
C = the sizein inches(width)of thediameterclassof a givenspecies. 

Solving for a we get 

"" 

[19]	
"a=- log Q 

C 
Since we know the number of trees in the largestdiameterclass and the a parameter we may solve 

for k using the negative exponentialequation, 

[20]	 k= SNn 
e-aDen 

So we can see that when Q and SNnare known we can estimate the a and k parameters needed for 

the negative exponential distributionin equation[17]. 

Calculations when Q or SNn are unknown 

If either Q or SNn are unknown then the basal area for the species on the plot (SBA) is used to 

compute the missing variable. 
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If Q and species basal area (SBA) are known, but SNn is unknown we iteratively solve for SNn 

using equation [21]. In equation [21] species basal area is fonnulated as the sum of the number of 

trees in a diameter class multipliedby the squareof the diameterclass. 

[21] SBA = K"LSNi DBHr 

where SBA =total basal area for the specieson the plot in squarefeet, 
SNi = the estimated number of trees of the species in the ithdiameter class, 
DBHi =the midpoint DBH of the ithdiameterclass in inches for the species, 
K' =a constant (0.005454)for convertingbasal area from square inches to 

square feet. 

To estimate SNn from Q and SBA we initially give SNn a starting value of one. Then if the 

estimated SBA is less than the specified SBA, SNnis increased by 0.001 or visa versa. Using the 

new estimate of SNn the procedure is repeated until the difference between the specified and 

estimated SBA is less than one square foot. Q can then be estimated from equation [18]. 

If Q is unknown then SBA and SNnmust be given. Q is then computed using an iterative process 

where Q is initially set to 1.1. The number of trees in each diameter class i of a given species is 

estimated by 

[22] SNj = SNn.Qn-i 

SBA is then estimated and compared to the specified basal area and the estimate of Q is 

incremented identically as the estimated SNn is incremented above. The same threshold of one 

square foot of basal area difference between the specifiedand estimated SBA is used as a stopping 
criteria. 

Now that all of the necessary infonnation is complete the coefficients for the negative exponential 

distribution may be easily computed. The diameters are simulated and written to the stand 

description file with an expansion factor of one. The tree total height and height-to-crown base is 

also estimated given the simulated diameter at breast height using equations [1] to [4]. The total 

number of trees for the species on the plot will be rounded to the nearest integer so that all the trees 

in the completed stand descriptionfIle will have an expansionfactor of one. 
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Estimatin~DBHs 

The derivation for the inverse cumulative distribution function of the negative exponential is as 

follows. The probability density function is integrated over the range of diameters up to the 
diameter of interest. 

DBH 
'" '" " DBH '" " 

=[23] F(DBH) = .k.e-a.Dc.dDC = .k. e-a'~c k . [e-a.DBH - e-a.m]f C C [ -a ]m [C .a 
"

Jm 

where F(DBH) =the cumulativenumberof trees betweenthe minimumdiameter (m), 
and the specifiedupperdiameter of interest (DBH), 

kand1} =estimatedconstants, 
m = DCmin- ~, with C = the class width in inches,

DCmin = minimumdiameterclass (in).


This provides the cumulative number of trees up to the the diameter of interest. Generating a 

uniform random number between 0 and 1 and multiplyingit by the total number of trees gives us a 

value for F(DBH), we may then solve for the DBH by inverting the above equation. 

C.1} "

-loge(-F(DBH).(~)+e-a.m )


[24] DBH = k 
1} 

Thus by generating a uniform random number (F) we can use the inverse transform of the 
cumulative distributionfunction to estimatediametersat breast height. 

Generation of the Understory Trees 

As an adjunct to the stand generation techniques (overstory generation) we have developed the 

capability to generate understory trees. The understorytrees can be between 1.0 and 11.0 inches at 

DBH. The overstory of trees (measured or generated) can be used to predict the band 

parameters of the Weibull needed to generate understory trees. Understory tree height and height
to-crown base values are estimated from equations [2] and [4] to complete the understory facsimile 

stand description. Because stands of trees are often simulatedfor over 30 years with the CACTOS 

system it is essential to be able to generate an understory component that matures with relatively 

long simulations. One reason we separated the overstory and understory components is that there 

is much greater variability (plot to plot, or stand to stand) in the number of understory trees than in 

the number of overstory trees. Hence the understorygenerator is inherently more imprecise. 

c 

http:.k.e-a.Dc
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A two-parameter Weibull disttibution was fit to the understorycomponent ( 1.0" :::;DBH :::;11.0") 

for each of the 308 permanent plots for which there were at least 6 understory trees present on the 

plot with a plot average diameter exceeding 5.5 inches. Six trees was chosen as a rninum number 

needed for estimating the 2 parameters of the Weibull disttibution, although most plots had many 

more than 6 trees. An 11.0" DBH was chosen as an upper value for the distribution rather than a 

5.5" DBH value to allow for a more regular disttibutional form and to increase the number of trees 

available for modelling the understorydiameter disttibution. Even though an upper DBH value of 

11.0 inches was chosen, the understory generation can be specified for any range within these 

limits. Summary statistics for the understorycomponentof the 308 permanent plots used to model 

the Weibull diameter disttibutionare presentedin AppendixB. 

We found that the coefficients of the Weibull for the understorycould be predicted as the following 

functions of overstory parameters: 

'" bl b2 b4CV 6 
[25] 

b =bo + N6 + DBHmin + b3CV6 + DBHmin 

[26] C=cl exp( c2b + C3XC4+ csy + c~) 

" 
where b =predicted valuefor b (scale)parameterof two parameter left truncatedWeibull 

C =predictedvalue for c (shape)parameterof two parameter left truncated Weibull 
N6 =thenumberof treesper acregreaterthan5.5 inchesin DBH, 
DBHmin = the minimum diameter measured on a specificplot, usually 1.0 or 2.0 inches 
CV6 =the coefficientof variationof DBH for trees greater then 5.5 inches DBH 
X =0.75 + BA6I87.945 - SDI6I131.0 
BA6 =Standbasalareain treesgreaterthan5.5inchesDBH 
SD16 =Stand density index consideringonly trees greater than 5.5 inches DBH (cf. 

Reineke 1933,Avery and Burkhart 1983) 
y = 0.035 + lI(b - SDI6)

'" 
Z =410.0 + lI[ In(b) -In(BA6)] 
bO, ... ,b4 =areb-coefficientsestimatedfor allspeciescombined 
Ct, ..., c6 =are c-coefficientsestimatedfor all speciescombined 

Coefficient values and fit statistics appear in Table 8 below. Due to the very great inherent 

variability of the understory component, these predictive equations explain a small but significant 

portion of the total variability. Therefore the predicted parameters resulting from using these 

equations will not be very precise but are still preferred over using a simple average value. In 
general, predicting the parameters of a Weibull disttibution from stand characteristics even in 
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situations where there is not a great deal of variation has proven difficult, and R2 values are 

typically less than 0.10 (Knoebel and Burkhart 1991). 

Table 8. Coefficients and fit statistic for the understory Weibull parameters for all species 

combined estimated on n =308 plots. 

MSE bO bI b2 b3 b4 

3.718 15.4269 -66.160 -15.0426 -0.13859 0.22027 

MSE Cl C2 c3 C4 c5 c6 

3.691 0.57718 0.31116 0.51325 2.9000 -18.8181 4.0501xlO-S 

Specification of total numbers of understorytrees 

Even though the b, and c-parameters of the Weibull distribution can be directly predicted via the 

two equations listed above, this distribution will give only the relative frequency of tree sizes. 

Therefore, the total number of understory trees needs to be specified before the understory can be 

generated. The total number of understory trees can also be predicted from overstory parameters. 

Predicting the total number of understory trees from overstory parameters is analogous to 

predicting the number of ingrowth trees (numbersof trees that will reach some minimum surveyed 

size in a specified time) with some obviousdifferences. They are similar in that both involve only 

use of overstory conditions to estimate the condition of the understory. Prediction of ingrowth 

numbers is arguably more well defined than prediction of total understory numbers in the sense 

that one particular size class is under scrutiny while prediction of understory numbers may involve 

a broad spectrum of size classes. On the other hand, estimates of ingrowth are further complicated 

by an implied growth rate of trees whose exact sizes are unknown, while estimates of the total 

number of understory trees represent a static depiction of the stand at one instant in time. Both 

estimation problems are complicated by the fact that stands currently with similar overstory 

conditions may have had dissimilar histories, which may result in dissimilar understory conditions. 

Models frequently used to predict ingrowth have .beenreviewed by Shifley (1990). Typically, 

variables important to the prediction of ingrowth involve stand density measures such as basal area 

per acre, number of trees per acre, percent stocking, and sum of diameters per acre. These 
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variables also affect growth rates of individual trees, so their superiority in predicting ingrowth is 

somewhat to be expected. One might also expect that additional variables may be required to 

predict total number of understory trees due to the previously noted differences between these two 

estimation problems. 

A useful approach to modelling the number of understory trees was found by viewing the problem 

as specification of total stand structure based upon what was found in the overstory portion only. 

This lead to the investigation of several stand structurevariables. Shifley and Lentz (1985) pointed 
out that the ratio of the mean DBH to the standMddeviation of DBH was a valuable index to the c, 

or shape, parameter in the Weibull distribution. Miller and Weiner (1989) and Knox and others 

(1989) found that the inverse of Shifley's index, commonlyknown as the coefficient of variation, 

was useful in describing "size inequality", or the degree of size hierarchy development in 

populations of forest trees. We found that the ratio of variance of DBH to the mean DBH was a 

useful predictor in our models for estimating total number of understory trees. 

A model for predicting the number of understory trees was patterned after the ingrowth models of 

Ek (1974) and Hyink and Moser (1983). The same model form is used for predicting the number 

of trees between 1.5 and 5.5 inches DBH (Nl-6), as for the number of trees between 5.6 inches 

and 10.5 inches DBH (N6-11)'The predictions for understory tree numbers are given by: 

[27] Nl-6 = exp{ bo + bl"DSUM~2.N61 + b3.(R6 + 1.5).N~4 } 

[28] Nl_ll =exp{ Co+ cl"DSUM'FrN i\ + c3.(Rll + 1.5)-Nl\ } 

" 
where Nl-6 = the predicted number of trees per acre with 1.5 ~ DBH ~ 5.5 " 

N 1-11 =the predicted number of trees per acre with 5.5 < DBH ~ 10.5 
N6 = the number of trees per acre whose DBH > 5.5 inches 
Nll = the number of trees per acre whose DBH > 10.5 inches 
R6 =the ratio of variance of DBH to mean DBH for trees> 5.5 inches 
Rll =the ratio of variance of DBH to mean DBH for trees> 10.5 inches 
DSUM6 =the sum of the diameters for trees whose DBH > 5.5 inches 
DSUMll =the sum of the diameters for trees whose DBH > 10.5inches 
bO'"'' b4 =b-coefficientsestimatedfor each forest type (see Table 9a), and 
cO,..., c4 = c-coefficientsestimatedfor each forest type (seeTable 9b) 

We found that predictions could be improved through stratification by forest type. An analysis was 

performed to see if any of the classes could be combined, but we found that a statistically significant 

improvement was made by using separate coefficients for each major forest type for predicting both 
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Nl-6 and N6-11. Thecoefficients werethereforeestimatedby timbertypeand are givenin Tables9a 
and 9b. 

Table 9a. Coefficients for Nl-6 

Timber type Sy.x N bo bl b2 b3 b4 

Douglas-fIr 52.8 25 9.015 -0.412 1.0 0.00091 1.0 
Mixed conifer 128.0 469 6.579 -0.211 1.0 0.00110 1.0 
Ponderosa pine 135.0 59 6.018 -0.002 1.691 0.00306 1.0 
True fIr 81.8 83 7.100 -0.266 1.0 0.00114 1.0 

Table 9b. Coefficients for N6-11 

Timber type Sy.x N Co Cl C2 C3 C4 

Douglas-fIr 35.9 25 6.525 -0.189 0.993 0.00223 1.0 
Mixed conifer 50.0 468 6.501 -0.146 1.0 0.00245 0.870 
Ponderosa pine 63.4 56 6.675 -0.188 1.0 0.00324 1.0 
True fIr 37.5 83 7.252 -0.626 0.836 0.00008 1.0 

STAG automatically determines which forest type the stand description belongs to using the 

following rules: 

Timber type DefInition 

Douglas-fIr Douglas-fIrcomprises~ 80% of the stand basal area (BA6 or BAll) 

Ponderosa pine ponderosa pine comprises ~ 80% of the stand basal area (BA6 or BA11) 
True fIr red fIr and white fIr comprise~ 80% of the stand basal area (BA6 or BAll) 

Mixed conifer no one species (PP, SP, DF, WF, RF, IC) exceeds 80% of the stand basal 

area (BA6 or BAll) 

It should be noted that these models are accurate, but not precise. That is to say, there is a large 

variance associated with these predictions. Therefore, the user is given two options for specifying 

the number of understory trees. The first option is prediction of understory tree number using 

equations [27] and [28]. This predicted number of understory trees for a given stand specification 

is displayed so that the user can accept the model prediction, or specify another value in lieu of the 

predicted number. This second option is provided for cases in which the user has good knowledge 
of local forest conditions and reproductionpatterns. 
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Specificationof ~ecies 

Species of the understory can be specified via two options. In the first option the rates of species 

composition can be specified that follow the database values used for model development in 

STAG. These rates are given in Table 10: 

Table 10. Percentages of Species by Timber Type Rounded to the Nearest Five Percent6. 
Timber Type 

D Mix nw r Fir 

Spp	 Diameter range Diameterrange Diameterrange Diameterrange

1-6* 6-11 1-11 1-6 6-11 1-11 1-6 6-11 1-11 1-6 6-11 1-11


PP 5 0 5 10 20 15 50 80 65 0 0 0

SP 5 0 5 5 5 5 5 0 5 5 5 5

IC 10 5 5 30 20 30 15 10 10 10 5 10

DF 60 85 70 15 20 15 5 5 5 0 0 0

WF 20 10 15 40 35 35 25 5 15 75 75 75

RF 0 0 0 0 0 0 0 0 0 10 15 11


We were unable to develop meaningful equationsfor prediction of species composition as related to 

the overstory composition and sizes of trees. Because of this the percentage of trees occurring in 

each species in the understory can be specifieddirectly by the user of the program. 

Creatin~ an understory tree list 

Because its possible to generate a large number of understory trees we use the following 

methodology to reduce the number of tree records being written. For either the predicted or the 

user specified number of understory trees (::S;11.0 inches at DBH) we generate individual tree 

records with a tree expansion factor of one. The diameters of these trees are generated from the 

Weibull distribution using the equationsfor band cgiven under "Generation of Understory trees." 

Tree heights and heights-to-crown base are determined according to equations [2] and [4] as 

described in "Estimating Total Height" and "Estimating Height-To-Crown Base", respectively. 

Stochastic errors are added according to the methodsdescribed in "StochasticErrors." 

6 DFl-6 denotes Douglas-fir timber type. The row entries corresponding to this column show the 
percent of species in the Douglas-fir timber type for trees within the 1-6 inch DBH class ( 1.5 ::s; 
DBH :::;5.5). Other columns show the percentage of species for a given timber type in the 6-11 
inch DBH class, and the 1-11 inch DBH class. Values ofless than 5 percent have been deleted, and 
the other categories within a column have been proportionally adjusted and rounded to the nearest 5 
percent. 
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After the understory is developed in the above fashion, the tree records are added to the existing 

overstory stand description. If the total number of records exceeds the 500 tree record limit 

imposed by CACTOS, or if the total number of tree records exceeds some user specified limit 

(which may be greater or less than 500), the user is given the option of "compressing" the 

understory tree list. Understory tree record compression is carried out by averaging those tree 

records which have similar tree attributes, then replacing those individual tree records with their 

average values and an appropriateexpansionfactor. 

The compression algorithm is implemented as follows. Individual tree records are grouped into 

DBH, total height, and live crown ratio classes by species. If the first grouping does not 

sufficiently reduce the number of understory tree records, successivelycoarser and coarser classes 

are examined until the number of understory tree records is less than or equal to the number 

desired. 

The first grouping uses rDBH classes, five dynamically determined height classes, and five 

dynamically determined live crown ratio classes. The height and live crown ratio classes are 

dynamically determined in the sense that the data determine the class limits and class intervals for 
each live crown ratio class nested within height class, where each height class is nested within 

DBH class. Thus, the maximum and minimum heights for the smallest DBH class will generally 

be different from those in the largest DBH class. Similarly, the largest and smallest live crown 

ratios found in the smallest height class of the smallestDBH class will generally be different from 

the largest and smallest live crown ratios found in the largest height class of the smallest DBH 

class, etc. We felt that these nested classes would retain more of the "individuality" of each tree 

record than would non-nested classes. 

If the first grouping fails to meet the desired number of understory tree records, the groupings are 

made successively coarser in the following manner. First, the number of dynamically determined 

height classes is reduced to three. If this grouping is unsuccessful, the number of live crown ratio 
classes is reduced from five to three also. Next, 1"DBH classes are tried, then two height classes, 

then 2 crown ratio classes, then 2" DBH classes. As a last resort, one tree record per understory 

species is attempted, though a compression of this severity is certainly not recommended if the 

number of generated understory tree records far exceeds the number of species. 

CONVERTINGSTANDTABLE DATATO AN INDIVIDUALTREE LIST 

A stand table contains the numbers of trees by diameter class (usually classes are between 1 and 2 

inches) and species. It is a common method for obtainingfield data, but obviously individual tree 
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information is lost. Its main advantage is that since diameters only have to be crudely 

approximated there are substantial time savings in collecting information. The number of trees in 

the diameter classes can be thought of as a discrete approximation to a continuous diameter 
distribution. 

The methodology used to convert stand table data into individual tree data to produce a facsimile 

stand description closely parallels the technique used for continuous data which was previously 

described under the section entitled "Generatingstands from summary statistics". We assume that 

the distribution of grouped diameters given species [p(DBH I Species)] follows a Weibull 

distribution. The probability of a tree height falling into some discrete height class given its species 

and DBH class [p(H I Species, DBH)], and the probability of a tree crown falling into some 

discrete class given its species, DBH and height class [p(HCB I Species, DBH, H)] are both 

hypothesized to follow a normal distribution. These assumptions were tested using a 

Kolmogorov-Smirnov test and found to be acceptable. For further detail see VanDeusen (1984). 

Diameter Distributions 

We postulated that distribution of diameters across diameter classes followed a Weibull 

distribution, but within a given diameter class we assumed that trees followed a uniform 

distribution. If diameter classes are not wide then this is a plausible assumption. We tested this 

latter assumption on 50 1/4111acre plots (see Van Deusen 1984) and found that the simplifying 

assumption of uniform distributionof diameterswithin a diameterclass yielded results quite similar 

to that obtained with using Weibull distribution across classes when diameter classes were no 

larger than two inches. 

Height Distributions 

An average value for height and height-to-crown base is predicted from equations [1] and [3] by 

using the diameter class mean. The predicted average height is used to locate the centroid of the 

height distribution within a diameter class (see Figure 1). The variance of the distribution is then 

approximated using the variance of the regression of the height prediction equation. We estimate 

the proportion of trees to allocate to a specific height class within a diameter class by determining 

the percentage of the area under the curve for each heightclass. We call this process distributional 

apportionment because we allocate (apportion) the number of trees per diameter class over the 

height classes using this methodology. 
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Figure 1. Distributional apportionmentof stand table data. 

Height-to-crown base Distributions 

We assume that the distribution of crowns within a given height and DBH class follows a normal 

distribution. We allocate the numbers of trees into each of the crown classes using the same 

methodology as used for allocating trees into height classes. The normal curve is first located 

using the mean height-to-crown base value assuming the midpoints of the height and diameter 

class. The variance of the normal curve is approximatedby the variance about the height-to-crown 

base predictive model. In the last step the area under the curve above each crown class is 

calculated and the number in each height-diameter cell over the crown class is determined 

according to these proportions. 

This apportioning process calculates the numbers of trees to place in each cell of the height

diameter-crown categories. We define these cells to be either 1 or 2 inch diameter classes 

(specified by the user), 10 foot height classes, and 10 foot height-to-crown base classes. 

Individual tree dimensions (diameter, height, and height-to-crown base) are given an equal 

probability of occurring at any location within this three dimensional cell by drawing random 

numbers which correspond to x,y,z coordinates in 3D space. Using this procedure we have 

developed an individual tree list from the original stand table, but they are pseudo-individual in the 

sense that they have been estimated using the above procedure, rather than measured. 

VALIDATING THE DIAMETER DISTRIBUTION GENERATION PROCEDURE 

The procedure was tested on 166 one-fifth acre permanent plots from the Northern California 

Forest Yield Cooperative database described under DATA. Only the Weibull distribution was 

tested since the stands used for the test are considered to generally be managed stands and do not 

follow a negative exponential distribution. The second measurement data collected in 1984 from 
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the southern Cascade region was used for the test. The accuracy of the procedure for predicting 

the number of trees per DBH class and the volume per DBH class was evaluated. Two inch DBH 

classes were used beginning at 5.5" and going to 49.5" DBH. The error index developed by 

Reynolds, Burk, and Huang (1989) was used for the test and is given as: 

[28] e = Not k( w(x).dF0c)- k( w(x).dF*(x)
J=l J J 

where e =error index, 
N = number of trees per acre, 
w(x) = weighting factor, ..--.

F(x) = the cdf of diameters on a plot as predictedfrom the model,

F*(x) = the empirical cdf,

dF(x) = the differential of the cdf (empirical or predicted) with respect to x (diameter)

k =the number of DBH classes,

I.J =the j.thDBH class. 

As the authors of the index point out a "good" fit in one diameter class does not offset a "poor" fit 

in another. The error index provides a means for comparing the overall fit of a model to another 

model, but the individual cells (DBH, species classes) must be examined to determine where a 

particular model fits adequately. 

We perform two sets of analysis. In the first we compute the error index of an "average stand". 

The "average stand" is the stand table produced by averaging all of the 166 stand tables associated 

with each of these plots. We judge our ability to produce a tree diameter distribution by seeing 

how accurately the number of trees in various diameter classes is predicted for this "average 

stand". We also judge how well our diameter distribution models work by comparing the 

volumes (Biging, 1983) predicted for each diameter class with the average volume computed from 

the 166 test plots. In the second analysis we present results which show the average of the error 

indices computed for each plot individually. 

The results for the "average stand" are shown in Tables 11 and 12. Table 11 shows the 

"misclassification" by species and DBH class for the average of the 166 plots. By 

misclassification we mean the signed values calculated from differencing the predicted number of 

trees (or volumes) from the actual number of trees (or volumes) in each diameter class. The sum of 

the absolute values (predicted minus observed, see equation [28]) is used by Reynolds, and others 
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to calculate the error index. Thus for ponderosa pine in the 8.5 DBH class this model 

underpredicted by 2 trees. 

In the right margin of Table 11 are the error indices by species. The indices' magnitude 

correspond, relatively, to the abundance of the trees on the plots. In other words, the more trees 

there are the greater the error. The bottom margin is the average misclassification across species 

for a particular DBH class. Thus we see on average an underprediction for the 6.5 to 8.5 DBH 

classes and an overprediction in the 10.5 to 12.5 DBH classes. There are on average only slight 

underpredictions for the 18.5-22.5and the 28.5 inch diameter class. The lower right cell of Table 

11provides the overall error index for this "averaged"plot which is a value of 68. 

Another statistic we computed was the average plot error index with its associated standard errors. 

The average was 358 and the standard error was 11.8. The average is quite large and shows the 

difficulty of predicting the diameter distributionfor a particularplot. The error index in Table 11 is 

much smaller (68) because we are averaging the plots and then computing the errors as opposed to 

average error index value (358.13)where we have the average of the individual plot error indices. 

Table 12 provides the same type of information as Table 11. In Table 12 the error index is 

weighted by board foot volume whereas in Table 11 the error index was weighted by numbers of 

trees. In Table 12 we see that volumes are on average slightly underpredicted for the 6.5-8.5 inch 

diameter class. Volumes are overpredicted in the 10.5-18.5inch diameter class, underpredicted in 

the 20.5-28.5 inch diameter class and overpredicted in the 30.5 inch and 32.5 inch and greater 
diameter class. 

In Table 11 we reported that on average the models underpredictedby 2 or 3 trees in the 18.5-22.5 

inch diameter class. Because trees in this size range average around 200-500 board feet it is not 

surprising that in Table 12we fmd that the misclassificationindex for diameter classes in this range 

vary from an overprediction of 516 board feet to an underprediction of 2374 board feet. The 

average net effect of these over and underpredictions is a slight over prediction of 330 board feet. 

Thus there appears to be no major bias in volume associatedwith producing diameter distributions 

using the Weibull generationprocedure. 

We also computed the average plot error index weighted by volume with its associated standard 

errors. The average was 44540 board feet and the standarderror was 3187 board feet. Again this 

underscores the difficulty of accurately predicting the diameter, and volume distribution on any 

particular plot. 
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In another test of this procedure we used the same plots to create "known" stand tables. We then 

used the stand tables to apportion the trees over height and crown classes. The results for the 

average stand table based on these 166 plots is presented in Table 13. The numbers of trees 

apportioned into these classes corresponded well with the actual numbers observed on the plots, 

except for the smallest diameter classes. Predicted heights and predicted heights-to-crown base 

were generally close to the observed average values. This demonstrates that stand tables can be 

generated which, on the average, closely approximate actual stands. Of course, good judgment 

should be exercised in using these routines. Real field data is always preferable to generating 

stands from summary statistics. Even though these procedures produce reasonable facsimiles to 

real stands there are always inaccuraciesproduced in this process. For a more detailed treatment of 

this analysis see Van Deusen (1984). 
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Table 11. Average misclassification indices (actual- predicted)ofnumbersof treesperacreby 
species and DBH classes and overall en-orindex of the "average"plot from STAG version 4.0. 

Misclassification Index 
DBH Class Species 

Species 6.5 8.5 10.5 12.5 14.5 16.5 18.5 20.5 22.5 24.5 26.5 28.5 30.5 82.5 Error Index 

pp 3 2 -4 -6 0 0 0 1 1 0 1 0 0 0 -2 (18) 

SP 1 0 0 0 1 0 0 0 0 0 0 0 0 0 2 (2) 
C 7 5 0 0 0 0 0 0 0 0 0 0 0 0 12 (12) 

DF 5 0 -2 0 0 0 0 0 1 0 0 0 0 0 4 (8) 

WF 9 4 -5 -5 -1 0 2 1 1 1 0 0 0 0 7 (28) 

RF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (0) 

25 11 -11 -11 0 0 2 2 3 0 1 0 0 0 22 (68) 

Table 12. Average misclassification indices (actual - predicted) of board feet to a 6 inch top per 
acre by species and DBH classes from STAG version 4.0 The value in the last column is the 
signed value while next to it in 0 is the absolute value necessary for the computation of the error 
index. 

MisclassificationIndex 
DBH Class Species 

Species 6.5 8.5 10.5 12.5 14.5 16.5 18.5 20.5 22.5 24.5 26.5 28.5 30.5 82.5 Error Index 

pp 38 24 -221 -521 -345 -223 -295 318 671 186 983 -95 -288 -576 -344 (5394) 

SP 2 -11 -6 -6 20 58 1 -110 60 125 -28 61 -67 -440 -341 (1651) 

IC 7 -1 -51 -72 -35 -130 87 4 130 90 18 0 72 269 388 (988) 

DF 21 -27 -193 -208 -215 -216 -299 -199 762 -3 199 0 -23 -161 -562 (2548) 

WF 84 55 -369 -716 -652 -624 42 309 655 205 107 802 -38 526 386 (5236) 

RF 3 -1 -44 -54 -57 -27 -52 18 96 72 384 -22 -69 -104 143 (1003) 

155 39 -884 -1577 -1284 -1162 -516 340 2374 675 1663 746 -413 -486 -330(16820) 
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Table 13. Average Stand Table based upon 166pennanent plots from the Southern Cascade Region. 

Diameter 
Class 

Observed 
Av. Numbers 

Expected
Av. Numbers 

Observed 
Av. Heiht 

Expected
Av. Heiht 

Observed 
Av. HCB 

Expected
Av. HCB 

6.5 50.2 21.7 35.5 39.7 21.0 16.3 
8.5 49.7 35.9 45.2 48.4 26.1 21.3 

10.5 30.4 42.5 56.4 57.6 31.9 26.3 
12.5 28.9 40.7 65.0 65.5 36.3 30.5 
14.5 29.5 29.7 72.2 73.4 38.5 34.6 
16.5 18.8 19.8 80.8 81.0 42.7 38.3 
18.5 15.2 12.5 85.7 87.9 44.7 42.4 
20.5 10.3 8.0 95.0 95.0 49.0 42.5 
22.5 9.8 4.5 99.1 102.3 51.6 49.0 
24.5 4.6 3.0 106.6 109.2 52.7 51.8 
26.5 5.0 1.9 113.1 114.8 59.4 55.2 
28.5 3.0 1.5 116.3 120.0 61.3 58.1 
30.5 1.3 1.0 120.0 124.8 65.8 60.7 
32.5 0.6 0.5 119.6 132.1 61.7 65.8 
34.5 0.7 0.4 135.2 136.6 75.5 69.9 
36.5 0.6 0.3 121.9 149.3 64.6 71.3 
38.5 0.4 0.2 140.4 145.8 69.6 68.5 
40.5 0.1 0.1 135.2 157.7 76.6 73.6 
42.5 0.1 0.1 147.7 168.8 89.7 78.1 
44.5 0.0 0.0 0.0 170.3 0.0 78.1 
46.5 0.1 0.1 146.3 167.8 97.0 83.1 
48.5 0.0 0.0 0.0 169.8 0.0 85.3 
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DISCUSSION


The Stand Generator, STAG, is an important component of a simulation system for mixed conifer 

growth and yield projection. STAG was created to ensure that different types of inventory data 

could be supplemented to produce data sets suitable for projection in the forest simulator 

CACTOS. There are different procedures and analysis routines within STAG for 1) processing 

missing data, 2) converting stand table data (approximations to a diameter distribution), and 3) 

transforming summary statistics such as number of trees and basal area per acre to a stand 

description comprised of complete individualtree records for use in CACTOS. To "fill in" missing 

data STAG uses predictive equations for total height and height-to-crown base developed from a 

permanent plot system of over 20,000 trees in Northern California. To create a complete stand 

description based only on summarystatistics (termed stand generation) is much more complicated. 

For this case STAG factors the joint distribution for species, DBH, H, and HCB into a product of 

probability density functions and models each of these components. The methodology developed 

for converting stand table data closely follows that describedfor stand generation. 

These procedures are not intended to replace extensive data collection procedures. Instead these 

are intended to increase the availability of data that can be used with the CACTOS simulation 

system. The procedures developed for STAG have been tested using permanent plot data for 

mixed species, multiple aged coniferous stands. They produce relatively accurate and reliable 

results particularly when filling in missing data. The stand generation and stand table conversion 

techniques should be used more cautiously as they only produce a facsimile of a stand given the 

reduced data sets or summary statisticsprovided. 
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Figure 1. Location of pennanent plots by township. 
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APPENDIX 

SummaryStatisticsfor the pennanent plot tree data. 

Ponderosa Pine 
Variable 
DBH (in) 
Total Height (ft) 
Height-to-crown base (ft) 
SITE 
Basal Area (ft2)per acre 
Number of trees per acre 

Mean 
14.11 
72.87 
34.92 
74.20 

104.42 
215.43 

Std. Dev. 
6.58 

27.97 
18.21 
17.51 
82.31 

100.04 

Minimum 
5.5 

12.0 
1.0 

29.0 
22.5 
16.0 

n =4173 
Maximum 

55.8 
184.0 
145.0 
150.0 
532.7 
515.0 

Sugar Pine 
Variable 
DBH (in) 
Total Height (ft) 
Height-to-crown base (ft) 
SITE 

Basal Area (ft2)per acre 
Number of trees per acre 

Incense Cedar 
Variable 
DBH (in) 
Total Height (ft) 
Height-to-crown base (ft) 
SITE 
Basal Area (ft2)per acre 
Number of trees per acre 

Mean 
15.96 
73.49 
36.91 
76.67 

216.27 
207.89 

Mean 
12.70 
48.19 
25.10 
76.22 

213.25 
205.21 

Std. Dev. 
8.41 

31.46 
18.25 
16.30 
98.08 
90.64 

Std. Dev. 
6.90 

22.17 
14.88 
16.49 
90.05 
91.31 

Minimum 
5.5 

15.0 
1.0 

29.0 
30.2 
15.0 

Minimum 
5.5 

11.0 
1.0 

29.0 
27.2 
18.0 

n = 1070 
Maximum 

59.1 
199.0 
105.0 
150.0 
532.7 
490.0 

n = 2260 
Maximum 

67.6 
182.0 
95.0 

130.0 
532.7 
515.0 

Douglas-fIr
Variable 
DBH (in) 
Total Height (ft) 
Height-to-crown base (ft) 
SITE 
Basal Area (ft2)per acre 
Numberoftreesracre 

Mean 
13.22 
72.59 
38.63 
77.82 

169.06 
182.98 

Std. Dev. 
5.91 

24.92 
18.34 
16.59 
72.56 
76.14 

Minimum 
5.5 

11.0 
2.0 

36.0 
16.5 
20.0 

n =2458 
Maximum 

50.4 
170.0 
126.0 
157.0 
424.2 
515.0 



p 42 

White fir n =5167 
Variable Mean Std. Dev. Minimum Maximum 
DBH (in) 
Total Height (ft) 
Height-to-crown base (ft) 
SITE 

13.03 
64.29 
33.37 
76.29 

6.17 
26.60 
17.49 
16.50 

5.5 
9.0 
1.0 

23.0 

48.9 
171.0 
114.0 
130.0 

Basal Area (ft2)per acre 
Number of trees per acre 

211.82 
203.20 

89.90 
89.92 

3.5 
5.0 

532.7 
525.0 

Red fir n = 501 
Variable Mean Std. Dev. Minimum Maximum 
DBH (in) 
Total Height (ft) 
Height-to-crown base (ft) 
SITE 

15.39 
70.01 
33.55 
65.43 

7.54 
29.09 
18.63 
11.35 

5.5 
15.0 
3.0 

46.0 

51.6 
154.0 
92.0 

104.0 

Basal Area (ft2)per acre 
Number of trees per acre 

230.00 
199.41 

94.37 
95.00 

36.6 
15.0 

428.8 
525.0 

Other Hardwoods n =273 
Variable Mean Std. Dev. Minimum Maximum 
DBH (in) 
Total Height (ft) 
Height-to-crown base (ft) 
SITE 

10.79 
47.57 
25.36 
78.51 

4.41 
19.85 
11.62 
21.52 

22.5 
11.0 
2.0 

37.0 

454.4 
104.0 
69.0 

114.0 
Basal Area (ft2)per acre 
Number of trees per acre 

204.61 
173.97 

108.70 
65.70 

22.5 
36.0 

454.4 
305.0 

Black Oak n = 340 
Variable Mean Std. Dev. Minimum Maximum 
DBH (in) 
Total Height (ft) 
Height-to-crown base (ft) 
SITE 

12.93 
52.55 
24.75 
75.83 

7.00 
19.55 
13.92 
15.45 

5.5 
12.0 

1.0 
37.0 

52.7 
164.0 
82.0 

114.0 
Basal Area (ft2)per acre 
Number of trees r acre 

188.40 
184.35 

86.57 
79.71 

30.6 
16.0 

424.2 
376.0 
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SummaryStatisticsforthepermanentplotsmalltreedata. 

All &pecies 
Variable Mean 

Tree Statistics 
Std. Dev. Minimum 

DBH (in) 
Total Height (ft) 
Heiht-to-crown base (ft) 

3.51 
19.24 
10.34 

1.16 
8.50 
7.30 

1.50 
5.00 
1.00 

Plot Statistics 
Basal Area of all tress 5.5" 10.51 8.78 0.59 
Number of all trees 5.5" 89.93 122.85 4.00 
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n =3339 
Maximum 

5.40 
64.00 
56.00 

0=308 
51.07 

755.00 

,





